Wolfgang De Meuter (Ed.)

Advances in
Smalltalk

14th International Smalltalk Conference, ISC 2006
Prague, Czech Republic, September 2006
Revised Selected Papers

LNCS 4406

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4406

Wolfgang De Meuter (Ed.)

Advances 1n
Smalltalk

14th International Smalltalk Conference, ISC 2006
Prague, Czech Republic, September 4-8, 2006
Revised Selected Papers

@ Springer

Volume Editor

Wolfgang De Meuter

Programming Technology Laboratory
Vrije Universiteit Brussel

Belgium

E-mail: wdmeuter @vub.ac.be

Library of Congress Control Number: 2007923851

CR Subject Classification (1998): D.1, D.2, D.3, FE.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-71835-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71835-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12044788 06/3180 543210

Preface

The 14th International Smalltalk Conference took place in the first week of
September 2006 in Prague, Czech Republic. This volume contains the peer-
reviewed technical papers that were presented during the academic track of the
conference.

The International Smalltalk Conference evolved out of the annual meeting of
the European Smalltalk User Group (ESUG). This meeting usually lasts about
a week and allows Smalltalk experts to discuss Smalltalk solutions and environ-
ments. The meeting attracts a diverse audience consisting of Smalltalkers from
industry as well as from academia. Thanks to the perpetual effort of people like
Stéphane Ducasse, Noury Bouraqadi, Serge Stinckwich and Roel Wuyts, over
the years the ESUG meeting was provided with a separate academic research
track during which researchers could present academic results about Smalltalk
and its development tools. Unfortunately, no formal publication forum was as-
sociated with this track, which made it less attractive for authors to submit a
paper. Starting with this edition of the conference, we hope this will change. An
agreement was reached with Springer to publish a post-conference proceedings
of this 14th edition. I think our community owes a big thank you to Stéphane
for this! Hopefully next year this agreement can evolve into a 15th edition of the
conference with formally announced proceedings. This will certainly motivate
more Smalltalk researchers to submit a paper!

The conference accepted just over half of the submissions. Although this can
be interpreted as a sign of low quality, I think it is not. The set of researchers
conducting their research in Smalltalk is quite small. However, as is the case with
the code produced by Smalltalkers, the quality-to-quantity ratio of the research is
high. This is confirmed by the fact that all papers were reviewed by at least three
members of the international Program Committee. The committee consisted of
a number of researchers that are highly renowned in the field of object-oriented
programming in general and in the Smalltalk world in particular. I would like to
thank them for their efforts in trying to make this a conference of outstanding
quality.

September 2006 Wolfgang De Meuter

Organization

Program Committee

Dave Simmons, Smallscript Corporation, USA

Noury Bouraqadi, Ecole des Mines de Douai, France
Nathanael Schaerli, Google R&D, Zurich, Switzerland
Andrew Black, Portland State University, USA

Serge Stinckwich, Université de Caen, France

Joseph Pelrine, MetaProg GmbH, Switzerland

Alan Knight, Cincom, USA

Thomas Kuehne, Technische Universitdt Darmstadt, Germany
Christophe Roche, Université de Savoie, France

Maja D’Hondt, Université des Sciences et Technologies de Lille, France
Maximo Prieto, Universidad Nacional de La Plata, Argentina
Brian Foote University of Illinois at Urbana-Champaign, USA
Dave Thomas, Bedarra Research Labs, USA

Gilad Bracha, SUN Java Software, USA

Serge Demeyer, Universiteit Antwerpen, Belgium

Pierre Cointe, Ecole de Mines de Nantes, France

Michel Tillman, Real Software, Belgium

Tudor Girba, Universitat Bern, Switzerland

Table of Contents

Application-Specific Models and Pointcuts Using a Logic Meta

Language 1
Johan Brichau, Andy Kellens, Kris Gybels, Kim Mens,
Robert Hirschfeld, and Theo D’Hondt

An Object-Oriented Approach for Context-Aware Applications 23
Andrés Fortier, Nicolds Canibano, Julidn Grigera,
Gustavo Rossi, and Silvia Gordillo

Unanticipated Partial Behavioral Reflection 47
David Rothlisberger, Marcus Denker, and Eric Tanter

Stateful Traits 66
Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and

Roel Wuyts

ScrL: A Simple, Uniform and Operational Language for
Component-Oriented Programming in Smalltalk 91
Luc Fabresse, Christophe Dony, and Marianne Huchard

Let’s Modularize the Data Model Specifications of the ObjectLens in
VisualWorks/Smalltalk i 111
Michael Prasse

Meta-driven BrowsSerst 134
Alexandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts

Author Index 157

Application-Specific Models and Pointcuts Using
a Logic Meta Language

Johan Brichau??*, Andy Kellens'**, Kris Gybels', Kim Mens?,
Robert Hirschfeld*, and Theo D’Hondt!

! Programming Technology Lab
Vrije Universiteit Brussel, Belgium
{akellens,kris.gybels, t jdhondt } @vub.ac.be
2 Département d’Ingénierie Informatique
Université catholique de Louvain, Belgium
{johan.brichau, kim.mens}@uclouvain.be
3 Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille, France
1 Hasso-Plattner-Institut
Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

Abstract. In contemporary aspect-oriented languages, pointcuts are
usually specified directly in terms of the structure of the source code. The
definition of such low-level pointcuts requires aspect developers to have
a profound understanding of the entire application’s implementation and
often leads to complex, fragile, and hard to maintain pointcut definitions.
To resolve these issues, we present an aspect-oriented programming sys-
tem that features a logic-based pointcut language that is open such that
it can be extended with application-specific pointcut predicates. These
predicates define an application-specific model that serves as a contract
that base-program developers provide and aspect developers can depend
upon. As a result, pointcuts can be specified in terms of this more high-
level model of the application which confines all intricate implementation
details that are otherwise exposed in the pointcut definitions themselves.

1 Introduction

Aspect-oriented Software Development (AOSD) is a recent, yet established devel-
opment paradigm that enhances existing development paradigms with advanced
encapsulation and modularisation capabilities [TI2]. In particular, aspect-oriented
programming languages provide a new kind of abstraction, called aspect, that al-
lows a developer to modularise the implementation of crosscutting concerns such

* This work was partially supported by the European Network of Excellence AOSD-
Europe.

** Ph.D. scholarship funded by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen).

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 1[22] 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Brichau et al.

as synchronisation, transaction management, exception handling, etc. Such con-
cerns are traditionally spread across various modules in the implementation, caus-
ing tangled and scattered code [3]. The improved modularity and separation of
concerns [4], that can be achieved using aspects, intends not only to aid initial
development, but also to allow developers to better manage software complexity,
evolution and reuse.

One of the most essential characteristics of an aspect-oriented programming
language is that aspects are not explicitly invoked but instead, are implicitly
invoked [5]. This has also been referred to as the ‘obliviousness’ property of
aspect orientation [6]. It means that the base program (i.e., the program without
the aspects) does not explicitly invoke the aspects because the aspects themselves
specify when and where they need to be invoked by means of a pointcut definition.
A pointcut essentially specifies a set of join points, which are specific points in
the base program where the aspect will be invoked implicitly. Such a pointcut
definition typically relies on structural and behavioural properties of the base
program to express the intended join points. For example, if an aspect must be
triggered at the instantiation of each new object of a particular class, its pointcut
must capture those join points whose properties correspond with the execution
of the constructor method. As a result, each time the constructor method is
executed (i.e. an instance is created), the aspect is invoked. In most aspect
languages, this corresponds to the execution of an advice, which is a sequence of
instructions executed before, after or around the execution of the join point.

Unfortunately, in many cases, defining and maintaining an appropriate point-
cut is a rather complex activity. First of all, an aspect developer must carefully
analyse and understand the structure of the entire application and the properties
shared by all intended join points in particular. Some of these properties can be
directly tied to abstractions that are available in the programming language but
other properties are based on programming conventions such as naming schemes.
‘Object instantiation’ join points, for example, can be identified as the execution
of constructor methods in languages such as Java. Accessing methods, however,
can be identified only if the developers adhere to a particular naming scheme,
such as through put- and get- prefixes in the method names. In contrast, a
language such as C# again facilitates the identification of such accessor method
join points because they are part of the language structure through the C#
‘properties’ language feature. In essence, we can say that the more structure is
available in the implementation, the more properties are available for the def-
inition of pointcuts, effectively facilitating their definition. However, structure
that originates from programming conventions rather than language structure
is usually not explicitly tied to a property that is available for use in a pointcut
definition. This is especially problematic in languages with very few structural
elements such as Smalltalk. In such languages, application development typically
relies heavily on the use of programming conventions for the implementation of
particular concepts such as accessors, constructors and many more application-
specific concepts. As a result, aspect developers are forced to explicitly encode

Application-Specific Models and Pointcuts Using a Logic Meta Language 3

these conventions in pointcut expressions, often resulting in complex, fragile, and
hard to maintain pointcut expressions.

The aspect-oriented programming language that is presented in this paper
features an open, logic-based pointcut mechanism that allows to tie structural
implementation conventions to explicit properties available for use in pointcut
definitions. Our approach builds upon previous work on logic-based pointcut
languages where we have described how the essential language features of a
logic language render it into an adequate pointcut definition language [7]. In
this paper, we further exploit the full power of the logic programming language
for the definition of application-specific properties. In particular, we present an
integration of the AspectS [8] and CARMA [] aspect languages for Smalltalk.
The result is an aspect-oriented programming language in which pointcuts can
be defined in terms of an application-specific model that is asserted over the
program. The application-specific model captures the structural conventions that
are adhered to by the developers of the program and reifies them as explicit
properties available for use in pointcut expressions. The model as well as the
pointcuts are implemented using logic metaprograms in SOUL [10].

In the following section, we present AspectSOUL, the integration of the As-
pectS and CARMA aspect languages. Next, in section[3, we implement a number
of pointcuts that rely on typical structural conventions that are adhered to by ap-
plication developers in a Smalltalk environment. We explain how such pointcuts
are complex, fragile, and hard to maintain and, in section dl, we describe how our
AspectSOUL allows to tackle these issues through the definition of application-
specific pointcuts, expressed in terms of an application-specific model. Section [l
applies the approach to aspects that operate on the drag and drop infrastructure
of the Ul framework and the refactoring browser in the Smalltalk environment.
We summarize related and future work in section 6l before concluding the paper.

2 AspectSOUL

AspectSOUL is an integration of the CARMA pointcut language [9] and AspectS
[8], a Smalltalk extension for aspect-oriented programming. Unlike most other ap-
proaches to aspect-oriented programming, AspectS does not extend the Smalltalk
programming language with new language constructs for writing down aspects
and advice expressions. Instead, AspectS is a framework approach to AOP. Point-
cuts are written as Smalltalk expressions that return a collection of joinpoint
descriptors. CARMA on the other hand, is a dedicated pointcut language based
on logic programming. Naturally, such a dedicated query language offers advan-
tages for writing pointcuts, as pointcuts are essentially queries over a joinpoint
database. The integration of this logic-based pointcut language with AspectS
further enforces the framework nature of AspectS by providing a full-fledged
query-based pointcut language that can be extended with application-specific
pointcut predicates. In essence, we combine the advantages of an extensible frame-
work for defining advice expressions with the advantages of a dedicated and

4 J. Brichau et al.

extensible pointcut language. In the remainder of this section, we introduce
AspectS, CARMA, and their integration called AspectSOUL. In subsequent sec-
tions, we focus on how the open, logic-based pointcut language provides devel-
opers with an adequate means to handle complex and hard-to-maintain pointcut
expressions.

2.1 AspectS

In the AspectS framework, aspects are implemented as subclasses of the class
AsAspect. Its advices can be implemented as methods whose name begins with
advice and which return an instance of AsAdvice. Two of the subclasses of
AsAdvice can be used to implement either an around advice or a before/after
advice. An instance can be created by calling a method which takes as its ar-
guments qualifiers, a block implementing the pointcut, and blocks to implement
the before, after or around effects of the advice.

An example advice method is shown in Figure [l It specifies that any invoca-
tion of an eventDoubleClick: method implemented by WindowSensor or any
of its subclasses should be logged. The effect of the advice is implemented in the
block passed to the beforeBlock: parameter. When one of the methods specified
by the pointcut needs to be executed, this block is executed right before the ex-
ecution of the method’s body. The block is passed a few arguments: the receiver
object in which the method is executed, the arguments passed to the method,
the aspect and the client. In this example, the block simply logs some of its
arguments to the transcript. Note that it calls a method on self, aspect classes
can implement regular methods besides advice methods as well. The pointcut is
implemented by the block passed to the pointcut: argument. It returns a col-
lection of AsJoinpointDescriptor instances. This collection is computed using
the Smalltalk meta-object protocol and collection enumeration messages: the
collection of WindowSensor and all of its subclasses is filtered to only those that
implement a method named eventDoubleClick:, an AsJoinpointDescriptor
is then collected for each of these.

Advice qualifiers specify dynamic conditions that should hold if the advice is to
be executed. These conditions are implemented as activation blocks: blocks that
take as arguments an aspect object and a stack frame. The framework defines a

adviceEventDoubleClick

~ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: #(receiverInstanceSpecific))
pointcut: [
WindowSensor withAllSubclasses
select: [:each |
each includesSelector: #eventDoubleClick:]
thenCollect: [:each |
AsJoinPointDescriptor targetClass: each targetSelector: #eventDoubleClick:]]
beforeBlock: [:receiver :arguments :aspect :client |
self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first]

Fig. 1. Example advice definition in AspectS

Application-Specific Models and Pointcuts Using a Logic Meta Language 5

number of activation blocks, that fall in two categories: checks done on the top
of the stack, or on lower levels of the stack. The former are used for example
to restrict advice execution to sender/receiver-specific activation: an advice on a
method is only executed if the method is executed in a specific receiver object,
or was invoked by a specific sender object, or is associated with a specific thread
of control. The latter are used for control-flow related restrictions, such as only
executing an advice on a method if the same method is not currently on the
stack. The activation blocks have names, which are specified in the attributes of
an AsAdviceQualifier. In the example advice, one activator block is specified:
receiverInstanceSpecific.

Aspects can be woven into the Smalltalk image by sending an explicit install
message to an aspect instance. The install method collects all advice objects
in the class and executes their pointcut blocks to get the collection of joinpoint
descriptors. The methods designated by these descriptors are then decorated by
wrappers [L1]], one for each advice affecting this particular method. The wrappers
check the activation blocks specified in their advice, passing them the aspect
and the top stack frame (accessed using the thisContext reflective feature of
Smalltalk [12]). If an activation condition does not hold, the wrapper simply
executes the next wrapper (if any), or the original method. If all activation
conditions hold, the wrapper executes the advice’s around, before, and/or after
block, and then proceeds to the next wrapper (if any) in the proper order, or
the original method.

2.2 CARMA

CARMA is a pointcut language based on logic meta programming for reasoning
about dynamic joinpoints. Unlike pointcuts in AspectS, CARMA pointcuts do
not express conditions on methods, its joinpoints are representations of dynamic
events in the execution of a Smalltalk program. CARMA defines a number of
logic predicates for expressing conditions on these joinpoints, and pointcuts are
written as logic queries using these predicates. It is possible to express conditions
on dynamic values associated with the joinpoints. Furthermore, logic predicates
are provided for querying the static structure of the Smalltalk program. These
predicates are taken from the LiCoR library of logic predicates for logic meta
programming [I3]. The underlying language of this library and CARMA is the
SOUL logic language [I3I10].

The SOUL logic language is akin to Prolog [I4], but has a few differences. Some
of these are just syntactical, such as that variables are notated with question
marks rather than capital letters, the “: =" symbol is written as if, and lists are
written between angular (<>) instead of square brackets ([1). More importantly,
SOUL is in linguistic symbiosis with the underlying Smalltalk language, allowing
Smalltalk objects to be bound to logic variables and the execution of Smalltalk
expressions as part of the logic program [I5]. The symbiosis mechanism is what
allows CARMA to express conditions on dynamic values associated with join-
points which are actual Smalltalk objects, such as the arguments of a message.

6 J. Brichau et al.

The advantage of building a pointcut language on the logic programming
paradigm lies in the declarative nature of this paradigm. No explicit control
structures for looping over a set of classes or methods are necessary in point-
cuts, as this is hidden in the logic language [I6]. A pointcut simply states the
conditions that a joinpoint should meet in order to activate an advice, without
specifying how those joinpoints are computed. This makes declarative pointcuts,
given some basic knowledge of logic programming of course, easier to read. A
logic language also provides some advanced features such as unification that
make it easier to write advanced pointcuts. A full discussion is outside the scope
of this paper, but a more comprehensive analysis was given in earlier work [9]. In
the next sections, we will however show how some of these features — particularly
the ability to write multiple rules for the same predicate — are useful for writing
model-based pointcuts.

design LiCoR [

visitor, factory, CARMA [
badSmell

basic reasoning
classWithInstvarOfType,

abstractMethod

reification lexical extent joinpoint type-based
class, methodInClass, within, reception, send,
superclassOf, shadowOf reference,
parseTreeOfMethod blockExecution

Fig. 2. Organization of, and example predicates in LiCoR and CARMA

The predicates in CARMA and LiCoR are organized into categories, as shown
in Figure 2l The LiCoR predicates are organized hierarchically, with higher pred-
icates defined in terms of the lower ones. The predicates in the “reification” cat-
egory provide the fundamental access to the structure of a Smalltalk program:
these predicates can be used to query the classes and methods in the program,
and the fundamental relations between them such as which class is a superclass
of which other class. The “basic reasoning” predicates define predicates that can
be used to query more complex relations: which classes indirectly inherit from
another class, which methods are abstract, which types an instance variable can
possibly have etc. The “design” category contains predicates about design infor-
mation in programs: there are for example predicates encoding design patterns
[17] and refactoring “bad smells” [18].

The CARMA predicates access the dynamic structure of a Smalltalk program.
There are two categories of predicates in CARMA, neither is defined in terms

Application-Specific Models and Pointcuts Using a Logic Meta Language 7

of each other, nor in terms of the LiCoR predicates. Nevertheless, the purpose
of the “lexical extent” predicates is to link the dynamic and static structure, so
that reasoning about both can be mixed in a pointcut. The within predicate
for example can be used to express that a joinpoint is the result of executing
an expression in a certain method. The “type-based” joinpoint predicates are
the basic predicates of CARMA, they express conditions on certain types of
joinpoints and basic data associated with those. An example is the reception
predicate which is used to express that a joinpoint should be of the type “mes-
sage reception”, which means it represents the execution of a message to an
object. Besides the joinpoint, the predicate has parameters for the basic associ-
ated data: the selector of the message and its arguments. There are also a few
other predicates in CARMA (not shown in the figure), such as the inObject
predicate which links a joinpoint to the object in which it is executed. In the
case of a reception joinpoint, this is the receiver of the message.

A pointcut in CARMA is written as a logic query that results in joinpoints. By
convention, the variable to which these are bound is called “?jp”. The joinpoint
representations should only be manipulated through the predicates provided by
CARMA. An example pointcut is given in the next section.

2.3 CARMA Pointcuts in AspectS

AspectSOUL, the integration of CARMA with AspectS, is realized by subclass-
ing the advice classes of AspectS so that a CARMA pointcut can be specified
instead of a Smalltalk expression. The signature of the instance creation mes-
sage for these subclasses is similar to the original. It takes as arguments a string
with a CARMA pointcut, qualifiers and an around or before and/or after block.
The message does a mapping to the instance creation message of the super-
class. This is not a direct 1-on-1 mapping however, because CARMA pointcuts
are about dynamic joinpoints, in contrast with the more static joinpoints of
AspectS. Also, because AspectS does not support aspects that intercept block
execution nor variable accesses or assignments, these features of CARMA are
not adopted in AspectSOUL.

An example of an AspectS advice with a CARMA pointcut is shown in
Figure Bl This is an around variant of the first example advice, with a point-
cut that has the same effect. The first condition in the pointcut specifies that
7jp must be a message reception joinpoint, where the selector of the message is
eventDoubleClick:. The arguments of the message are bound to the variable
7args. However, 7args is not used any further in the pointcut which expresses
that no conditions are put on the argument list. The second condition expresses
that the joinpoint must occur lexically in a method with name ?selector in the
class 7class. For a message reception joinpoint, this is effectively the method
that is executed to handle the message. The final condition expresses that the
class 7class should be in the hierarchy of the class WindowSensor. The block
has the same effect as in the first example, except that here it explicitly calls
the next wrapper (if any) or original method.

8 J. Brichau et al.

adviceEventDoubleClick

~ AsCARMAAroundAdvice
qualifier: (AsAdviceQualifier attributes: #())
pointcutQuery: ’reception(?jp, #eventDoubleClick:, ?args),
within(?jp, 7class, ?selector),
classInHierarchyOf (?class, [WindowSensor])’
aroundBlock: [:receiver :arguments :aspect :client :clientMethod
self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first.
clientMethod valueWithReceiver: receiver arguments: arguments]

Fig. 3. Example AspectS advice definition with a CARMA pointcut

reception(?jp, #eventDoubleClick:, <?event>),
objectTestHolds(7event, #isYellow)

Fig.4. A CARMA pointcut with a condition on a dynamic value

Figure [gives an example of a CARMA pointcut which does express condi-
tions on the arguments of a message reception. The first condition expresses that
7jp must be a message reception joinpoint of the message eventDoubleClick:,
where the argument list unifies with the list <?event>. Thus the argument list
has to have one argument, which is bound to the variable 7event. The value
of 7event is the actual Smalltalk event object that is sent as the argument
of eventDoubleClick. The second condition uses the objectTestHolds predi-
cate, which uses the symbiosis mechanism of SOUL to express that the object
in 7event must respond true to the message isYellow. Thus, this pointcut
captures joinpoints when a message about a double click event of the yellow
mouse button is sent to some object. Expressing the same in AspectS can only
be done by defining an appropriate qualifier, or by including the dynamic condi-
tion in the around block of the advice. The CARMA approach means that what
conceptually should go into a pointcut can be better separated from the effect
of the advice: that we only want to intercept double click events of the yellow
mouse button is part of the “when” of the advice, not of the “what effect” it
has. All of the qualifiers of AspectS can be expressed in CARMA, except for the
control-flow qualifiers because CARMA does not currently support a construct
similar to the cflow pointcut of AspectJ [19].

Two-phased weaving: The mapping done in the AspectSOUL advice sub-
classes to the original advice classes of AspectS involves the two-phase weav-
ing model of CARMA. Because CARMA allows dynamic conditions and it is
a Turing-complete language, it requires some advanced techniques to optimize
weaving [9]. The mapping uses abstract interpretation [20] of the pointcuts
to determine the methods which may lead to joinpoints matching the point-
cut. For the pointcut of Figure [it determines that only executions of meth-
ods named eventDoubleClick: may match the pointcut. For these methods,
AsJoinpointDescriptors are generated and passed to the advice superclass.
The effect block passed to the superclass is wrapped so that it at run-time

Application-Specific Models and Pointcuts Using a Logic Meta Language 9

executes the pointcut to check if the joinpoint actually matches it, only then
does it execute the effect of the advice. As such, the mapping splits the static
and dynamic parts of the pointcut as one would normally do in AspectS by
specifying dynamic conditions as part of the advice’s effect block. Currently, the
pointcut is fully re-executed at run-time, including the static conditions, except
if it doesn’t include any dynamic conditions. The use of more advanced partial
evaluation [20] to further optimize weaving has been demonstrated [2I], but a
full discussion of two-phase weaving and the use of partial evaluation is beyond
the scope of this paper.

In the following sections, we discuss how pointcut definitions easily become
rather complex to implement and maintain, and how AspectSOUL provides de-
velopers with a means to manage this complexity.

3 Pointcuts Based on Structural Conventions

In the development of an application, developers often agree on particular pro-
gramming conventions, design rules and patterns to structure their implementa-
tion. The intention of these structural implementation conventions is to render
particular concepts more explicit in the implementation. For example, if all de-
velopers adhere to the same naming convention for all ‘accessor’ methods, we
can more easily distinguish such accessors from any other method. More impor-
tantly, the implementation structure that is introduced by these conventions is
also often exploited in pointcut definitions. In this section, we demonstrate this
principle by studying the structural convention used to implement accessor and
mutator methods, a simple but often-used pattern in Smalltalk. Next, we take
a look at a couple of pointcuts which rely on these conventions to capture the
execution of accessor methods. We demonstrate how, by implicitly capturing
the notion of an accessor method using the coding conventions, the pointcut
becomes more complex and easily suffers from the fragile pointcut problem.

3.1 Accessors and Mutators

In Smalltalk, clients are not allowed to directly access the instance variables
of an object, and therefore they need to access them by means of dedicated
methods. For each instance variable, a developer specifies an accessor method
to retrieve the value of the variable, and a mutator method to change its value.
Although these are regular Smalltalk methods, accessors and mutators are easily
recognized since they are almost always implemented in an idiomatic way.

Most accessor and mutator methods are implemented according to the follow-
ing structural convention:

— Both methods are classified in the accessing protocol;

— The selector of the accessor method corresponds with the name of the in-
stance variable;

— The selector of the mutator method also corresponds with the name of the
variable, however, this method takes one input parameter, namely the value
to be assigned to the variable.

10 J. Brichau et al.

Moreover, the body of the accessor and mutator methods also follows a pro-
totypical implementation. For example, suppose we have a Person class with
an instance variable named name. The accessor and mutator methods for this
variable are:

Person>>name
“name

Person>>name: anObject
name := anObject

Since the join point models of current-day aspect languages do not explicitly
reify these accessor and mutator methods as a separate kind of join points,
aspect developers must exploit the structural conventions described above in
order to capture the concept in a pointcut. For example, to capture all calls to
accessor methods, the aspect developer can implement the following pointcut in
AspectSOUL:

class(?class),

methodWithNameInClass(?method, 7accessor,?class),
instanceVariableInClassChain(?accessor,?class),
methodInProtocol(?method, accessing),
reception(?joinpoint,?accessor,?args),
withinClass(?joinpoint,?class)

o oA W N

The above pointcut makes the implicit assumption that accessor methods are rig-
orously implemented using the naming scheme in which the name of the method
corresponds with the name of the instance variable. Lines 1 to 4 of the pointcut
reflect the naming convention on which the pointcut is based. These lines se-
lect all messages corresponding to the name of an instance variable, and whose
method is also classified in the accessing protocol. Lines 5 and 6 will intercept
all messages which correspond to the naming convention.

As long as the developers of the base code adhere to the naming convention
on which the pointcut relies, it will correctly capture all accessors. However,
if a developer of the base program deviates from the naming convention, by
for instance renaming the instance variable without also renaming the selector
of the accessor, the pointcut no longer captures the correct set of join points.
Instead of relying on naming conventions, a pointcut developer can also exploit
the stereotypical implementation of accessor methods. This would result in the
following pointcut:

class(?class),

methodWithNameInClass(?method, ?selector,?class),
instanceVariableInClassChain(?var,?class),
returnStatement (?method,variable(?var)),
reception(?joinpoint,?selector,7args),
withinClass(?joinpoint,?class)

o G A W N -

Lines 1 — 4 of the pointcut above select all methods which contain a return state-
ment that directly returns the value of an instance variable. As with the previous
pointcut, lines 5 and 6 capture all occurrences of these methods. While this point-
cut is not fragile with respect to changes in the names of instance variables, it still
assumes that the base code developer rigorously followed the implementation id-
iom. However, often there exist slight variations on the programming idioms on
which a pointcut is based. Consider for instance the following accessor method:

Application-Specific Models and Pointcuts Using a Logic Meta Language 11

Person>>friends
~ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

This method presents a variation on the often-used programming idiom for ac-
cessor methods. Instead of directly returning the value of the instance variable,
the method checks wether the variable has already been initialized, and if not,
will set its value to an empty OrderedCollection. It is clear that this lazy-
initialised version of accessor methods will not be captured by the pointcut
which assumes that the accessor is implemented using a return statement that
directly returns the value of the variable. In other words, the pattern that is
expressed in the previous pointcut does not apply to this method, although it is
an accessor method.

3.2 Complexity and Fragility

Although the example pointcuts described above rely on a rather simple struc-
tural implementation convention, their definition and maintenance is already a
rather complex activity. First of all, an aspect developer needs to know and un-
derstand the intricate implementation details of the structural convention and
implement a pointcut expression for it. The lazy-initialized accessor methods in
the example above illustrate that there often exist a number of variations to the
programming conventions used to implement a certain concept. Therefore, any
pointcut that needs to capture the execution of an accessor method needs to cap-
ture all possible variations, which easily leads to complex and lengthy pointcut
expressions. This is especially the case because the part of the pointcut which
reasons about the join points and the part which expresses the structural conven-
tion are not clearly separated. In our example above, the first four lines of both
pointcuts express the coding convention, while the last two lines perform the ac-
tual selection of join points which are associated with the accessor methods. It
is not instantly clear which part of the pointcut reflects the coding convention,
further complicating the reuse and maintenance of the pointcut expression.

Finally, the aspect developer must also carefully analyse the changes and ad-
ditions to the base program in subsequent evolutions, which are possibly made
by other developers. In essence, the definition of a pointcut that explicitly relies
on structural conventions to capture an application-specific concept easily suf-
fers from the fragile pointcut problem [22]. Due to the tight coupling between
the pointcut and the implementation, seemingly safe modifications to the imple-
mentation may result in the pointcut no longer capturing the correct set of join
points. For example, if the base program developers do not adhere to the coding
conventions, or change the convention by for instance using the prefixes put-
and get- to indicate a mutator or an accessor method respectively, the pointcut
no longer captures the correct set of join points.

4 Application-Specific Pointcuts and Models

We alleviate the problems associated with low-level pointcut definitions through
the definition of application-specific pointcuts that are expressed in terms of an

12 J. Brichau et al.

application-specific model. Such an application-specific model is implemented as
an extension to the pointcut mechanism and it identifies high-level, application-
specific properties in the implementation and makes them available for use
in pointcuts. Aspect developers can make use of these properties to define
application-specific pointcuts, i.e. pointcuts that are no longer defined in terms
of the low-level implementation details but, instead, are defined in terms of
application-specific properties defined by the model. As a result, the intricate
low-level details in the implementation remain confined to the implementation
of the application-specific model, which is also the responsibility of the base
program developers. The application-specific model effectively becomes an addi-
tional abstraction layer that is imposed over the implementation and it acts as
a contract between the base program developers and the aspect developers.

Base program developer Aspect developer

1

Application-specific pointcut !

/ |
]
]
] (defined in terms of 1
7% application-specific model) |
(_’__) ;) S :
[]

Source code

Legend

Source code based
pointcut
di ly in terms
of source code)

l specified in terms of

C) application-specific property

Fig. 5. Application-specific pointcuts are defined in terms of an application-specific
model

Figure [l illustrates how application-specific pointcuts, implemented by the
aspect developers, depend on the definition of the application-specific model that
is certified by the base program developers. The application-specific pointcuts
are defined in terms of the application-specific model which, in turn, is defined in
terms of the implementation. This decoupling of the pointcuts from the intricate
details of the implementation allows that base program developers define and
maintain the application-specific model. In other words, the tight coupling to the
implementation that is present in the source-code based pointcuts is effectively
transferred to a more appropriate location, i.e. the definition of the application-
specific model.

Both the application-specific pointcuts and the application-specific model
are implemented using SOUL logic metaprograms. In essence, the application-
specific model defines a set of logic predicates that reify application-specific

Application-Specific Models and Pointcuts Using a Logic Meta Language 13

properties of the implementation, based on the conventions that are adhered
to by the developers. Because the application-specific model is built as an ex-
tension to the pointcut mechanism, aspect developers can straightforwardly use
these predicates in the definition of application-specific pointcuts to access the
application-specific properties. Furthermore, the essential features of a logic lan-
guage also facilitate the use and extension of the application-specific model.

In the following subsection, we define application-specific models for the acces-
sors convention that was described in the previous section. Subsequently, we use
these models to redefine the pointcuts of the previous section into application-
specific pointcuts.

4.1 Application-Specific Model

An application-specific model defines a set of logic predicates that are avail-
able for use in an (application-specific) pointcut. These logic predicates are im-
plemented using SOUL logic metaprograms. We illustrate the definition of an
application-specific model by means of the accessors and mutators example.

The model that defines the accessor and mutator method properties consists
of two predicates:

accessor(?class, ?method, ?var)
mutator(?class, ?method, ?var)

These predicates declare the accessor and mutator properties over methods
named ?method defined in ?class. Furthermore, they also extract the name
of the variable ?var that is accessed or modified. The implementation of these
predicates captures the coding convention that is followed by the developer of
the application. For example, the accessor predicate is implemented as follows:

accessor(?class, ?varName, ?7varName) if
class(?class),
instanceVariableInClassChain(?varName, ?class),
methodWithNameInClass(?method, ?varName, ?class),
methodInProtocol(?method, accessing),
accessorForm(?method, ?varName) .

accessorForm(?method, ?var) if
returnStatement (?method,variable(?var))

The logic program above consists of two rules that each implement a predicate:
accessor and accessorForm. The first predicate is defined in terms of the second
one and a variety of predicates that are available in LiCoR. The first rule captures
the naming convention of accessor methods as well as their classification in the
‘accessing’ protocol, as we described earlier. The verification of the idiomatic
implementation of the accessor method is located in the second rule. This rule
verifies if the method’s implementation consists of a single return statement that
consists of a single expression: the variable. As a consequence, the above logic
metaprogram classifies methods of the following form as accessor methods:

Person>>name
“name

14 J. Brichau et al.

4.2 Application-Specific Pointcuts

Once the application-specific model is defined by the base program developers,
the aspect developers can use it to define application-specific pointcuts. For
example, the application-specific pointcut that captures the execution of accessor
methods can now be written as follows:

reception(?joinpoint,?selector,?args),

accessor(?class,?selector,?var)

This application-specific pointcut no longer relies on a particular coding con-
vention for accessor methods, as opposed to source-code based pointcuts. In-
stead, it relies on the application-specific property of an accessor method that is
provided by the application-specific model. The base program developers ensure
that this model is maintained such that all accessor methods are correctly iden-
tified. Furthermore, because the pointcut definition now explicitly states that it
captures the execution of accessor methods, it is more readable and understand-
able to other developers. Of course, the above pointcut is a rather simple use
of a single application-specific property. However, a single application-specific
property does not correspond to a single pointcut. For example, consider the fol-
lowing pointcut that is defined in terms of the accessor and mutator properties:
reception(?joinpoint,?selector,?args),
accessor(?class,?selector,?var),
mutator(?class,?otherSelector, ?var)

This pointcut matches all accessor method execution join points for variables
for which there also exists a mutator method. It can, for example, be used in a
synchronisation aspect to execute a write lock advice.

4.3 Model Specialisation

A specific advantage of building the application-specific model using a logic
metalanguage is that we can easily extend the model through the definition
of alternative logic rules for existing predicates. For example, the application-
specific model that we defined above does not classify all accessor methods cor-
rectly. There exist many more possible implementations of accessor methods,
such as the lazy-initialisation presented in section Bl Because the coding con-
vention is now explicitly defined in the application-specific model and because
the application-specific model is restricted to the coding conventions only, the
base program developers can easily extend it to accommodate additional acces-
sor forms. This is in contrast to when the coding convention is implicitly used
in a pointcut definition. More importantly, because the model is defined as a
logic metaprogram, additional accessor forms can be defined using alternative
definitions for the accessor predicate. For example, we can extend the defini-
tion of this property to include lazy-initialised accessor methods by including
the following logic rule:

accessorForm(?method, ?var) if
returnStatement (?method,send (?nilCheck, [#’ifTrue:ifFalse:’],<?trueBlock,?falseBlock>)),
nilCheckStatement (?nilCheck, ?var),
statements0fBlock(<assign(?var,?varinit)>,?trueBlock),
statementsOfBlock(<?var>,?falseBlock)

Application-Specific Models and Pointcuts Using a Logic Meta Language 15

The above logic metaprogram provides an alternative definition for the
accessorForm predicate. These alternatives are placed in a logical disjunction
and, as a result, our application-specific model also ties the accessor property to
methods of the following form:

Person>>friends
~ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

However, the following accessor method does not correspond to the coding
convention:

Person>>phoneNumbers
~ phoneNumbers ifNil:[phoneNumbers := OrderedCollection new] ifNotNil:[phoneNumbers].

Therefore, we can again define an alternative logic rule that detects accessor
methods of the above form:

accessorForm(?method, ?var) if
returnStatement (?method,send(?var, [#’ifNil:ifNotNil:’],<?nilBlock,?notNilBlock>)),
statements0fBlock(<assign(?var,?varinit)>,?nilBlock),
statementsOfBlock(<?var>, ?notNilBlock)

Such a model specialisation is particularly useful if different developers im-
plement different modules of the same base program. If all developers agree on
a single application-specific model (i.e. a set of properties implemented by pred-
icates), they can each follow their own programming convention to implement
each property. For example, one set of developers might even agree on the use
of put and get prefixes for all accessor methods while other developers can fol-
low the common Smalltalk convention that we just explained. The first group of
developers then needs to define an alternative logic rule that correctly detects
methods prefixed with put and get and implemented in their part of the base
program as accessor methods.

4.4 Property Parameters and Unification

The definition of an application-specific model using a logic metalanguage does
not only allow developers to associate structural conventions to properties avail-
able for use in pointcuts. In addition, the properties can be parameterized and
expose values associated to the property. For example, the accessor predicate
does not only expose particular methods as accessor methods, it also exposes
the actual variable that is accessed by the methodl. More precisely, because a
logic language does not make a distinction between arguments and return values,
the variable that is accessed is also automatically a parameter of the accessor
predicate. This also holds for all other parameters of the accessor predicate: they
can act both as parameters as well as return values associated to the property.
In essence, the logic language feature of ‘unification’ allows that we can auto-
matically use the application-specific property that is defined by the accessor
predicate in multiple ways, i.e. any argument of the predicate can be bound or
unbound. A couple of examples are illustrated in the following code excerpt.
Each line represents a separate use of the accessor predicate.

! Mind that the method name can be different from the variable name, depending on
the actual coding convention.

16 J. Brichau et al.

1 accessor(?class,?selector,?var)
2 accessor([Array],#at:put:,?var)
3 accessor(?class,?selector,#name)

The first line will retrieve all accessor methods and expose their class, method-
name and accessed variable. The second line checks if the at:put: method in
the Array class is an accessor method and retrieves its accessed variable. Finally,
the use of the accessor predicate on the last line retrieves all accessor methods
that access a variable named name.

5 Application-Specific Models in Practice

The accessors and mutators example is a valuable application-specific model but
relies on very simple coding conventions. In the development of a Smalltalk appli-
cation, there are many more conventions that can be used to expose application-
specific properties valuable for use in a pointcut definition. We illustrate the use
of two such conventions in the following subsections. In particular, we build a
model that exposes properties based on structural conventions used in the drag
and drop framework of the user-interface and the implementation of refactorings
in the refactoring browser in Visualworks Smalltalk.

5.1 Drag and Drop Application-Specific Model

The drag and drop facilities in VisualWorks Smalltalk are implemented by means
of a lightweight framework. This framework identifies a number of hooks that
allow a developer to implement the drag and drop behaviour for his particular
application. These hooks are:

— Drag Ok: a predicate to check wether the current widget may initiate a
drag;

— Start Drag: actions which need to take place in order to start the drag (e.g.
creating a drag and drop context, ...);

— Enter Drag/Exit Drag: these hooks are triggered whenever during a drag,
the mouse pointer enters/exists the boundaries of a certain widget;

— Over Drag: actions which are executed when the pointer is hovering over
a widget during a drag (e.g. change the cursor);

— Drop: actions which take place when an element is dropped on a widget.

A developer can add drag and drop functionality to an application by asso-
ciating methods with the hooks specified above. This is done by means of the
windowSpec system of the VisualWorks user interface framework. A windowSpec
is a declarative specification of the different widgets which make up the user in-
terface of an application. This specification is then used by the user interface
framework to construct the actual interface. In the windowSpec, the developer
can, for each widget, associate methods with the different hooks of the drag and
drop framework. In order to access the data which is being dragged, the origin of
the drag operation, etc. these methods pass around a DragDropManager object.

Application-Specific Models and Pointcuts Using a Logic Meta Language 17

The structure of the framework described above can be used to define an
application-specific model that associates methods to an explicit drag and drop
property: i.e. for each of the hooks defined above, we define a separate predicate.
For example, we define the dragEnterMethod(?class,?sel, ?comp) predicate
that classifies all methods that implement the ‘drag enter’ hook. Furthermore,
this predicate exposes the name of the visual component in the interface that
is dragged over. This predicate allows aspect developers to write application-
specific pointcuts that capture a drag event as the execution of such a method:

reception(?jp,?selector,?args),
dragEnterMethod(?class,?selector, ?component)

Furthermore, we also define the draggedObject (?dragdropmanager ,7object)
and dragSource (7dragdropmanager, ?source) predicates that reify the object
being dragged and the source component from where it is being dragged re-
spectively. Both predicates extract this information from the DragDropManager
instance that is being passed as an argument to the drag and drop meth-
ods. We can now further extend the pointcut such that it only captures drag
events that originate from a particular source or drags of a particular object.
For example, we complete the above pointcut with the following conditions
to capture drags originating from a FigureManager (lines 2-3) and dragging
a Line object (lines 4-5). The first line merely extracts the only argument
being passed to the ‘drag enter’ method, which is the DragDropManager object.
equals(?args,<?dragdropmanager>) ,
dragSource (?dragdropmanager , ?source) ,
instanceOf (?source, [FigureManager]),

draggedObject (?dragdropmanager, 7object) ,
instance0f (?object,Line)

o W e

This pointcut is particularly useful for the definition of an aspect that renders
an icon in our user-interface depending on the element that is being dragged.
Without aspects, we would need to implement the visualisation of such an icon in
the ‘drag enter’ method of every application model in our user-interface, resulting
in duplicated and scattered code. Furthermore, the application-specific model
now also allows us to decouple the pointcut definition from the actual structural
conventions used in the user-interface framework and implement them in terms
of the explicit application-specific properties associated to a user-interface.

5.2 Refactorings

Refactorings are behaviour-preserving program transformations which can be
used to improve the structure of the application [I8]. A number of these refac-
torings can be automated up to a certain degree, which has resulted in the
development of tool support for performing refactorings directly from the IDE.
In VisualWorks, such tool support is integrated with the Refactoring Browser.

The Refactoring Browser makes use of a framework implementing these
refactorings. In this framework, all refactorings are represented by a sub-
class of the abstract Refactoring class. Each subclass must implement a
preconditions method, which specifies the preconditions that the source code

18 J. Brichau et al.

to be refactored needs to adhere to in order to perform the refactoring, and a
transform method, which performs the actual program transformation.

As an example of an aspect based on the refactoring framework, consider a
software engineering tool (for instance a versioning system) which, each time
a refactoring is initiated, needs to be notified of the program entities which
are possibly affected by the refactoring. Such information is hard to retrieve
from the source code of the framework. However, by creating an application-
specific model for the refactoring framework, we can explicitly document this
additional information. The following pointcut retrieves all affected entities for
the instantiation of a refactoring:
reception(?joinpoint,?message, 7arguments),
inObject(?joinpoint,?receiver),
refactoringInstantiation(?receiver,?message,?arguments,7affectedentities)

The first two lines of the pointcut select all message receptions and their
receiver; the last line restricts these message receptions to the ones which in-
stantiate a refactoring. Also, the pointcut binds all affected entities, depending
on the input and the type of the refactoring to the variable 7affectedentities.

The refactoringInstantiation rule is defined as follows:

1 refactoringInstantiation(?refactoring,?message,?args,?affectedentity) if
2 refactoring(?refactoring),
3 methodWithNameInClass(?method, 7message, Prefactoring),
4 instanceCreationMethod(?method),
5 refactoringAffectedEntity(?refactoring,?refactoringclass,?args,?affectedentity)
The first line of this rule checks wether the receiver of the message is a refactoring
(i.e. wether it is a subclass of the class Refactoring). The second and third line
implement the selection of those messages (and their arguments) which create
an instance of the refactoring. Finally, the last line calculates, based on the
arguments of the message, the program entities which can be affected by the
refactoring.

For each refactoring, the affected entities are explicitly documented by logic
rules.

refactoringAffectedEntity(?refactoring, [PushUpMethodRefactoring],?input,?affectedentity) if
originalClass0fPushUpMethod(?input,?affectedentity)

refactoringAffectedEntity(?refactoring, [PushUpMethodRefactoring] ,?input,?affectedentity) if
originalClass0fPushUpMethod(?input,?class),
superclass0f (?7affectedentity,?class).
The above rules reflect this knowledge for the Method Push Up-refactoring. The
first line of both rules extracts the class of the method which will be pushed up
from the arguments of the message reception. For this refactoring, both the class
from which the refactoring is initiated (the first rule), as well as its superclass
are affected (the second rule).

6 Related and Future Work

In previous work [23], we have introduced the technique of model-based pointcuts
that allows to define pointcuts in a similar way as the application-specific point-
cuts presented in this paper. In fact, the approach presented in this paper is a

Application-Specific Models and Pointcuts Using a Logic Meta Language 19

first step towards an improved integration of model-based pointcuts and logic-
based pointcut languages [7]. In essence, we further extended the technique of
model-based pointcuts to exploit the full power of the logic programming lan-
guage for the definition of application-specific properties. In [23], we merely
extended the pointcut language with a single predicate that allows to query a
conceptual model of the program, implemented using intensional views [24]. In
this paper, the model consists of full logic predicates, resulting in an improved
integration of the model and the pointcuts. In contrast, in [23], we have shown
how model-based pointcuts are less fragile with respect to changes in the base
program primarily due to tool support that enforces developers to adhere to the
correct conventions such that the model remains valid. In this paper, we have
focused on the adequate features of a logic language for the creation and exten-
sion of the model and we presented an improved integration of the model with
the pointcut mechanism itself. We are currently working on how to reconcile the
support for the detection of the fragile pointcut problem with the full power of
the application-specific models presented in this paper. Furthermore, there are
a number of related approaches or techniques that work towards the same goal:

6.1 Expressive Pointcut Languages

Some recent experimental aspect-oriented languages also propose more advanced
pointcut languages. The Alpha aspect language, for example, also uses a logic
programming language for the specification of pointcuts and enhances the ex-
pressiveness by providing diverse automatically-derived models of the program.
These models and their associated predicates can, for example, reason over the
entire state and execution history [25]. In particular, Ostermann and Mezini
have also identified how to build user-defined pointcut predicates using a logic
language. EAOP [26] and JAsCo [27] offer event-based or stateful pointcuts that
allow to express the activation of an aspect based on a sequence of events during
the program’s execution.

6.2 Annotations

An alternative approach to application-specific pointcuts over application-
specific models is to define pointcuts in terms of explicit annotations in the
code [28/29]. Annotations classify source-code entities and thereby make ex-
plicit additional semantics that would otherwise be expressed through implicit
programming conventions. This approach, however, does not benefit from the
expressive power that is provided by the logic metalanguage.

6.3 Design Rules and XPI

Yet another alternative approach is to explicitly include the pointcut descriptions
in the design and implementation of the software and to require developers to
adhere to this design. Sullivan et al. [30] propose such an approach by interfacing
base code and aspect code through design rules. These rules are documented in
interface specifications that base code designers are constrained to ‘implement’,

20 J. Brichau et al.

and that aspect designers are licensed to depend upon. Once the interfaces are
defined (and respected), aspect and base code become symmetrically oblivious
to each others’ design decisions. More recently, the interfaces that are defined by
the design rules can be implemented as Ezxplicit Pointcut Interfaces (XPI’s) using
Aspect]J [31]. Using XPIs, pointcuts are declared globally and some constraints
can be verified on these pointcuts using other pointcuts. Our approach is differ-
ent in the fact that we keep the pointcut description in the aspect, leaving more
flexibility to the aspect developer. While XPIs fix all pointcut interfaces before-
hand, our application-specific model only fixes the specific properties available
for use in pointcut definitions.

7 Conclusion

AspectSOUL is an extension of the AspectS language framework with the open-
ended logic-based pointcut language of CARMA. The resulting integrated aspect
language allows developers to extend the pointcut language with an application-
specific model. Such an application-specific model defines new pointcut predicates
that reify implicit structural implementation conventions as explicit properties
available for use in pointcut definitions. These model-based pointcuts are decou-
pled from the intricate structural implementation details of the base program,
effectively reducing their complexity. The definition of the application-specific
model confines all these technical details and serves as a contract between the base
program developers and the aspect developers. Finally, the logic paradigm offers
adequate language features for the definition and extension of the application-
specific model.

References

1. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-oriented programming, in: Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP), no. 1241 in LNCS, Springer-
Verlag, 1997.

2. R. E. Filman, T. Elrad, S. Clarke, M. Aksit, Aspect-Oriented Software Develop-
ment, Addison-Wesley, 2004.

3. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtoir, J. Ir-
win, Aspect-oriented programming, in: European Conference on Object-Oriented
Programming (ECOOP), LNCS, Springer Verlag, 1997, pp. 220-242.

URL citeseer.ist.psu.edu/kiczales97aspectoriented.html

4. D. L. Parnas, On the criteria to be used in decomposing systems into modules,
Communications of the ACM 15 (12) (1972) 1053-1058.

5. J. Xu, H. Rajan, K. Sullivan, Understanding aspects via implicit invocation, in:
Automated Software Engineering (ASE), IEEE Computer Society Press, 2004.

6. R. Filman, D. Friedman, Aspect-oriented programming is quantification and obliv-
iousness, workshop on Advanced Separation of Concerns (OOPSLA) (2000).
URL citeseer.ist.psu.edu/filmanOOaspectoriented.html

7. K. Gybels, J. Brichau, Arranging language features for more robust pattern-based
crosscuts, in: Aspect-Oriented Software Development (AOSD), 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Application-Specific Models and Pointcuts Using a Logic Meta Language 21

R. Hirschfeld, Aspect-Oriented Programming with Aspects, in: Lecture Notes in
Computer Science: Objects, Components, Architectures, Services, and Applica-
tions for a Networked World: International Conference NetObjectDays, NODe 2002,
Erfurt, Germany, October 7-10, 2002. Revised Papers, 2003.

K. Gybels, J. Brichau, Arranging language features for more robust pattern-
based crosscuts, in: Proceedings of the Second International Conference of Aspect-
Oriented Software Development, 2003.

The Smalltalk Open Unification Language (SOUL), http://prog.vub.ac.be/SOUL.
URL http://prog.vub.ac.be/research/DMP/soul/soul2.html

J. Brant, B. Foote, R. E. Johnson, D. Roberts, Wrappers to the rescue, Lecture
Notes in Computer Science.

F. Rivard, Smalltalk: a reflective language, in: Proceedings of the Reflection Con-
ference 1996, 1996.

K. Mens, 1. Michiels, R. Wuyts, Supporting software development through declar-
atively codified programming patterns, Journal on Expert Systems with Applica-
tions 23 (4) (2002) 405-413.

U. Nilsson, J. M, Logic, Programming and Prolog, second edition Edition, John
Wiley & Sons, 1995.

URL http://www.ida.liu.se/~ulfni/lpp/copyright.html

K. Gybels, R. Wuyts, S. Ducasse, M. D’Hondt, Inter-language reflection: A con-
ceptual model and its implementation, Elsevier Journal on Computer Languages,
Systems & Structures 32 (2006) 109 — 124.

URL http://prog.vub.ac.be/Publications/2005/vub-prog-tr-05-13.pdf

R. Kowalski, Algorithm = logic 4+ control, Communications of the ACM 22 (7)
(1979) 424-436.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

C. Lopes, E. Hilsdale, J. Hugunin, M. Kersten, G. Kiczales, Illustrations of cross-
cutting, in: P. Tarr, M. D’Hondt, C. Lopes, L. Bergmans (Eds.), International
Workshop on Aspects and Dimensional Computing at ECOOP, 2000.

N. D. Jones, C. K. Gomard, P. Sestoft, Partial Evaluation and Automatic Program
Generation, Prentice Hall International, 1993.

H. Masuhara, G. Kiczales, C. Dutchyn, Compilation semantics of aspect-oriented
programs, in: G. T. Leavens, R. Cytron (Eds.), Foundations of Aspect-Oriented
Languages Workshop at AOSD 2002, no. 02-06 in Tech Report, Department of
Computer Science, lowa State University, 2002, pp. 17-26.

URL ftp://ftp.cs.iastate.edu/pub/techreports/TR02-06/TR.pdf

C. Koppen, M. Stoerzer, Pcdiff: Attacking the fragile pointcut problem, in: First
European Interactive Workshop on Aspects in Software (EIWAS), 2004.

A. Kellens, K. Mens, J. Brichau, K. Gybels, Managing the evolution of aspect-
oriented software with model-based pointcuts, in: In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Spring-Verlag, 2006.

K. Mens, A. Kellens, F. Pluquet, R. Wuyts, Co-evolving code and design with
intensional views - a case study, Computer Languages, Systems and Structures
32 (2-3) (2006) 140-156.

K. Ostermann, C. Mezini, M. Bockisch, Expressive pointcuts for increased modu-
larity, in: European Conference on Object-Oriented Programming (ECOOP), 2005.

22

26

27.

28.

29.

30.

31.

J. Brichau et al.

. R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura, M. Stidholt, An ex-
pressive aspect language for system applications with arachne, in: Aspect-Oriented
Software Development (AOSD), 2005.

W. Vanderperren, D. Suvee, M. A. Cibran, B. De Fraine, Stateful aspects in JAsCo,
in: Software Composition (SC), LNCS, 2005.

W. Havinga, I. Nagy, L. Bergmans, Introduction and derivation of annotations in
AOP: Applying expressive pointcut languages to introductions, in: First European
Interactive Workshop on Aspects in Software, 2005.

G. Kiczales, M. Mezini, Separation of concerns with procedures, annotations, ad-
vice and pointcuts, in: European Conference on Object-Oriented Programming
(ECOOP), LNCS, Springer Verlag, 2005.

K. Sullivan, W. Griswold, Y. Song, Y. Chai, M. Shonle, N. Tewari, H. Rajan, On
the criteria to be used in decomposing systems into aspects, in: Symposium on the
Foundations of Software Engineering joint with the European Software Engineering
Conference (ESEC/FSE 2005), ACM Press, 2005.

W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Teware, Y. Cai, Rajan.H., Mod-
ular software design with crosscutting interfaces, IEEE Software, Special Issue on
Aspect-Oriented Programming.

An Object-Oriented Approach for
Context-Aware Applications*

Andrés Fortier':2, Nicolds Canibano®, Julidn Grigera!, Gustavo Rossi':3,

and Silvia Gordillo*

L LIFIA, Facultad de Informética, UNLP, La Plata, Argentina
2 DSIC, Universidad Politécnica de Valencia, Valencia, Espafia
* CONICET
* CICPBA
{andres,cani, juliang,gustavo,gordillo}@lifia.info.unlp.edu.ar

Abstract. In this paper we present a novel, object-oriented approach for
designing and building applications that provide context-aware services.
Our approach emphasizes a clear separation of the relevant concerns
in the application (base behavior, context-sensitive properties, services,
sensing technologies, etc.) to improve modularity and thus simplify evo-
lution. We first motivate the problem with a simple scenario of a virtual
campus; we next present a new context model, which emphasizes on be-
havior instead of data. We next show the main components of our archi-
tecture and a simple approach to achieve a clear separation of concerns.
We analyze the most important (sub) models in which we decompose
a context-aware application and explain the use of dependency mecha-
nisms to achieve loosely coupled relationships between objects. We also
show how to take advantage of a reflective environment like Smalltalk to
adapt the application’s behavior dynamically and to provide transparent
object distribution. We finally compare our work with others and discuss
some further work we are pursuing.

1 Introduction: The Challenges of Context-Awareness

Context-Aware (and in particular Location-Aware) applications are hard to
build and more difficult to maintain due to their organic nature [I]. For this rea-
son, improving modularity and reducing tightly-coupled relationships between
objects is extremely necessary when designing this kind of software.

Among the many issues involved in developing and maintaining context-aware
systems, we consider the following as the main difficulties:

— Context-aware systems integrate knowledge from different areas
such as HCI, artificial intelligence, software engineering and context sensing
to produce the final application. Due to the extent of this discipline, we
consider that the next generation of context-aware systems will need an
integrating platform rather than a single application [6].

* This paper has been partially supported by the SeCyT under the project PICT
13623.

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 23 2007.
© Springer-Verlag Berlin Heidelberg 2007

24

A. Fortier et al.

— Context information is acquired from non-traditional devices and

distributed sources, and must then be abstracted and interpreted to be
used by applications [4].

— Abstracting context means more than changing representation.

While interpreted context data is usually dealt as string data, applications
are composed of objects, and many times those objects represent contextual
information as well. There is a certain impedance mismatch between context
and application data, even when they refer to the same concept.

— Adapting to context is hard; design issues related with context-aware

adaptation are not completely understood and thus handled incorrectly. For
example, the rule-based paradigm has been over-used in the last few years to
express adaptation policies, such as: “When being in a room, provide services
A, B and C”. While rules can be often useful (especially when we want to
give the user the control of building his own rules), we claim that more
elaborated structures are necessary to improve maintenance and evolution.

— Context-related information is usually “tangled” with other appli-

cation data; for example, the location of an application object (which is
necessary to detect when the user is near the object) is coupled with others
object’s concerns, making evolution of both types of characteristics difficult.

Our research deals with the identification of recurrent problems and design

micro-architectures in context-aware software. In this paper we describe an ar-
chitectural approach for dealing with the problem of providing context-aware
services. Our approach is based on a clear separation of concerns that allows
us not only to decouple context sensing and acquisition (as in [I4]), but mainly

to

improve separation of application modules, to ease extension and mainte-

nance. For this purpose we make an extensive use of dependency mechanisms

to

provide context-aware services and take advantage of the reflective nature of

the Smalltalk environment to dynamically change objects’ behavior and achieve
transparent distribution.

The main contributions of our paper are the following:

— We show how to separate application concerns related with context aware-

ness to improve modularity. This approach can be used to build new appli-
cations or to extend legacy ones by adding location and other context-aware
services. A concrete architecture that supports this approach is presented.

— We show how to objectify services and make them dependent of changes of

context; in particular we emphasize location-aware services.

— We introduce a behavioral point of view to deal with contextual information

(instead of the current data view of most existing approaches).

— We show how to use the reflective capabilities of Smalltalk to model our

conception of context.

— We show how to take advantage of transparent distribution mechanisms in

mobile environments.

An Object-Oriented Approach for Context-Aware Applications 25

2 DMotivating Example

Suppose we are adapting an existing software system in a University Campus to
provide context-based services (in particular location-based ones), in the style
of the example in [T6]. Our system already provides information about careers,
courses, professors, timetables, etc. We now want users carrying their preferred
devices to interact with the system while they move around the campus. For
example, when a student enters a classroom, he can get the corresponding
course’s material, information about its professor, etc. At the same time, those
services corresponding to the containing location context (the Campus) should
be also available. When he moves to the sport area, the course’s related ser-
vices disappear and he receives information about upcoming sport events. Even
though we use the user’s location as an example, different contextual informa-
tion such as the user’s role or activity might also shape the software answer. For
example, we could infer whether the student is attending to a lecture by sensing
his position, checking his timetable, verifying the teacher’s position and sensing
the noise level in the classroom. As a consequence, the student’s smarthpone
could be switched to silent mode so that it doesn’t interrupt the teacher in the
middle of his lecture.

The first design problem we must face is how to seamlessly extend our appli-
cation in order to make it location-aware, i.e. to provide services that correspond
to the actual location context. The next challenge involves adapting the behav-
ior to the user’s role (a professor, student, etc) and other contextual parameters
such as current time or activity. While applications of this kind have always been
built almost completely from scratch, we consider that this will not be the case
if context-aware computing becomes mainstream; we will have to adapt dozens
of legacy applications by adding context-aware behavior.

When working with context-aware applications we can find typical evolution
patterns such as adding new services related to a particular location, improv-
ing sensing mechanisms (for example moving from GPS to infrared), changing
the location model (from symbolic to geometric [I1]), and so on. While most
technological requirements in this scenario can be fulfilled using state-of-the art
hardware and communication devices, there are many design problems that need
some further study:

— During the day the user is involved in a set of activities that constantly
change what is contextually relevant. How do we model context so that it
can follow this changes and effectively adapt to the user’s needs?

— How can the system adapt to appearing (previously unknown) sensing de-
vices? For example, in the moment the user enters in the range of a wi-fi
access point new sensing devices may be available through the network.
This new sensing information can be used to improve the user’s context and
therefore improve the system response to user’s needs.

— Context information can be provided by a variety of sensing devices during
a short period of time; for example, the weather conditions can be acquired
from a software sensor (a web service when an Internet connection is avail-
able) or from a hardware device (a simple weather station installed in the

26 A. Fortier et al.

building accessed through a sensor network). Thus, even thought context is
mainly built from sensing information, to easily adapt it to different technolo-
gies, it should be as loosely coupled as possible from the sensing mechanisms.
How do we model this relationship?

— Context-aware behavior may depend on application functionality, but this
kind of functionality tends to be volatile in comparison with the core appli-
cation. How can the application cooperate with context-ware behavior in a
way that changes in the later don’t impact on the former?

The aim of this paper is to focus these problems, mainly those that charac-
terize the difficulties for software evolution and to show how combining proven
design principles with reflective facilities can yield a scalable architecture to build
context-aware software.

3 Our Context Model

Even though context is recognized as having a dynamic nature, it is usually
treated as a fixed piece of data upon which some behavior is executed, which we
consider neglects its essence. From our point of view, context should be modeled
as close as possible to the phenomenological view presented by Dourish [5].
Taking his definition as a starting point, we claim that the following properties
must hold when modeling context:

1. Context is not passive. The context model must take an active role in the
application and shouldn’t be considered as a static collection of data. If
decisions must be taken according to the context, then the context itself
should be actively involved in that process.

2. Context is not stable and can not be defined in advance. Since context is
inherently dynamic, we can not constraint the context information that will
be modeled when designing the application. Since context-aware applications
are supposed to adapt to the user’s activities, what is contextually relevant
to the user is constantly changing. Therefore, our model of context should
be able to represent these dynamically varying aspects of the user’s context
that are relevant in a given situation.

3. Context is independent of the sensing mechanisms. Even though context
information is usually gathered automatically, the representation of this in-
formation should be independent of the sensing mechanism. As we will see in
the following sections, if our context model is tightly coupled to the sensing
hardware, the system evolution will be heavily compromised.

In order to fulfill these requirements, we decided to split context in a set
of context aspects, each one responsible for modeling the behavior of a specific
context feature. As a result, the context is not seen as data provided by ex-
ternal acquisition mechanisms, but as the emergent behavior provided by the
interaction of the different context aspects. This behavior, encapsulated in ev-
ery context aspect, varies as the application runs, allowing to provide different

An Object-Oriented Approach for Context-Aware Applications 27

adaptation to the user according to his context. By using this scheme, what we
are actually modeling is the behavior that is contextually relevant to the user in
a given moment of time.

4 The Object-Oriented Architecture

As previously mentioned, to achieve flexible context-aware applications a set of
main concepts must be identified and clearly separated. Other approaches for
building context-aware applications have also identified concerns that must be
separated to achieve modularity: sensing (implemented for example as Widgets
in [4]), interpretation (also mentioned as context management in [9]) and ap-
plication model. Layered architectural approaches [9], or MVC-based ones like
[14] provide the basis for separating those concerns using simple and standard
communication rules. However, applications are considered as being monolithic
artifacts that deserve little or no attention. It is easy to see in the motivating
example that the gap between application objects (in particular their behaviors)
and the outer (context-related) components is not trivial.

As a case study, let’s analyze the location aspect of the example in greater
detail. Context-aware applications are supposed to aid the user during his daily
activities, which means that they must be able to cope with location models of
different granularity; for example, if we want to offer a set of services in the user’s
office, small distances are important and a fine-grained location model should be
used. On the other hand, if we want to offer services when the user is moving in
his car along the country, the granularity of the location model must be larger, so
that adaptation can be provided according to the user’s activity. Unfortunately,
there is no silver bullet for location models and we must use different location
representation according to the specific requirements.

Symbolic models [IT] that represent inclusion, adjacencies or distances be-
tween locations characterized as symbols are generally well suited for indoor
location. These models represent in a clear way those relationships between the
locations, can represent very fine-grained structural arrangements and are easy to
understand by humans. On the other hand, Geometric models [I1] are well suited
for representing large areas where accuracy does matter or when it is necessary
to calculate distances between objects with an important level of correctness. As
a drawback, creating geometrical models for large maps (for example, a city) is
a hard task (when not impossible) without the aid of a specialized organization.
Also, geometrical models don’t add semantics to the regions they represent, they
just provide the boundaries for performing calculations; so, if we want to tag a
specific polygon as being the Plaza Hotel, we must do it manually.

In this area it’s worthwhile mentioning Google Earth and it’s Community. This
application uses different levels of detail of geometric locations, allowing to easily
compute distances between two places, get 3D views of the cities and print maps
with country borders. When routing information is available, we can also ask for
the shortest route between two places. Although Google Earth doesn’t handle sym-
bolic locations, the Community users can tag latitude/longitude points with de-
scriptions in order to give semantic to geometric points. Descriptions can vary from

28 A. Fortier et al.

simple strings explaining what the place is, to a complete description with photos
and links. Even though tags give semantic to geometric places, they cannot be con-
sider symbolic locations since they don’t offer any location information; symbolic
locations (and locations in general) must provide meaningful information in or-
der to compute at least one operation by themselves, which is not the case (a tag
without the geometric point where it’s attached to can’t perform any operation).
As can be seen from the example above, a single context aspect (such as the
user’s location), can turn out to be a whole world in itself. On top of this, the
forces that may impose changes in a context aspect have nothing (or very little)
to do with the application model or with the services that are provided. For exam-
ple, when adapting the user services to his location, the services subsystem should
only care about knowing where the user is (for example, in the library) and not
about the details of how the location model determines the user’s location. Also,
we should remember that context is essentially dynamic and that context aspects
can’t be fixed at design time. For this reasons, in the same way that MVC [10] ar-
chitectures argue for a clear separation between the model and the view, we argue
that a similar separation must hold between the application model, the context
model, how the context is sensed and the way services are offered to the user.

4.1 Main Components

In order to tackle the issues previously mentioned, we decided to decompose a
context-aware application in two orthogonal views: the application-centered view
and the sensing view. The application-centered view is concerned with context
and service management and is in turn separated in three layers. The sensing
view (which will be described in Section Bl is concerned with the mechanisms
used to get external data and how to feed this data, as transparent as possi-
ble, into the context aspects. In Fig. [[l we show the layers that comprise the
application centered view.

In the Application Model layer we specify the application classes with their
“standard” behavior (i.e. those application classes and methods are not aware
of the user’s context, neither they exhibit context-related information). In our
example this layer would have classes like Room, Schedule, Teacher, and so on. The
Context layer is in turn composed of a set of context aspects, each one creating a
high-level representation of a specific part of the user’s context. As can be seen in
Fig.[l we take a different approach when it comes to establishing the relationship
between the application and the context model: in most approaches, context is
presented as data that is somehow processed by the application, thus creating a
knowledge relationship from the core application to the context representation.
As explained in the previous section, we consider that this approach is rather
limited and that a behavioral point of view should be taken to handle context. In
our architecture the application does not fetch data from the context, but it is the
context itself who extends the application functionality. By separating context in
independent aspects we are able to add the behavior that is contextually relevant
in a given moment, so that it is the aspect itself the one who decides how the
adaptation is made.

An Object-Oriented Approach for Context-Aware Applications 29

Application Model
— ' =1t =it
. Network |, .. .
Location Bandwidth User Activity
Services —> Knowledge
————————— > Dependency

Fig. 1. A layered approach for the Application-Centered view

The Services layer models the concepts related to a context-aware application
from a services point of view. This layer has the responsibility of deciding what
services are available to the user in a given situation. For that purpose, four
main abstractions are modeled: the user, the services, the services environment
and the service providers. As expected, the user object represents the physical
user who is carrying a mobile device and which is the focus of the system’s
attention. The user in this layer has attached a set of context aspects that
can vary dynamically, according to what is considered contextually relevant in
a given time. When there is a change in the user’s context (either because a
context aspect changed or because a context aspect is added or removed) the
user’s available services are updated according to the system configuration. This
configuration basically establishes a relationship between the services and the
different contexts in which the user may be, generally represented as a constraint
(i.e. a certain service is provided if a constraint is satisfied). As an example, when
working with location-dependent services, each service will be associated with a
set of geographic areas represented in the location aspect; when the user changes
his location, new services may become active or former ones removed.

Each service is associated with a service provider, which is in charge of creating
the service when required, acting as a Builder [7]. Besides, every service provider
defines a set of constraints to determine when it is allowed to give its services
to the user. Upon a change in the user’s context, each provider is asked to
reevaluate his constraint in order to determine if a new set of services should be
added to the user or existing ones removed. Finally, services, providers and users
are immersed in a service environment, which reifies the real-world environment
from a services view. The service environment acts a Mediator [7] between service
providers, services and users.

4.2 Communication Mechanisms

As shown in Fig. [[I we use a layered approach to separate the application-
centered view concerns. In this view, context aspects are the basis on which the
services layer is mounted. In the services layer, the user object holds the set
of currently active context aspects, which are used to determine what services

30 A. Fortier et al.

aspects *

ContextAspect

—

+ contextEvent: anEventName

+ onContextEvent: anEventName send: aSelector to: anObject
+ onAnyContextEventSend: aSelector to: anObject

-3{ + onContextEvent: anEventName evaluate: aBlock

+ onAnyContextEventEvaluate: aBlock

+ retractinterestinEvent: anEventName for: anObject

+ retractAllEventinterestsFor: anObject

<<type>>
Location

v
|
I
i
I
I
I
I
i
i
i
i L lonAspect + = otherLocation
I
1
I
I
i
i
I
1
I
I
i

location | *+ includes: aLocation

+ intersects: alocation

+ properlylntersects: alocation
+ intersect: otherLocation

+ merge: otherLocation

+ location

+ location: newLocation
+ inside: alocation

+ includes: aLocation

> User OT activeProviders *
" ServiceProvider

+ activeServices
+addAspect: aContextAspect + addUserService: aServiceClass
+ removeAspect: aContextAspect + addUserService: aServiceClass afterCreationDo: aBlock

+ activeProviders - + getServiceNamed: aServiceName
+ addProvider: aServiceProvider + includesUserServices: aCollection

I
i
i
i
i
i
i
i
i
!
| |+ removeProvider: aServiceProvider + providesService: aUserService
i
i
i
i
i
i
i
i
i
i
i
i

+ subscribeTo: aServiceClass + removeUserService: aServiceClass
+ unsubscribeFrom: aServiceClass

serviceProviders *

Ser t

,,,,,, B UserService
+ addServiceProvider: aServiceProvider services *
- : . i
@ S : + description
+ getProvidersFor: aUser +name
N . > . Haine
~ addAvailableService: aServiceClass availableServices * | + isActive

+ removeAvailableService: aServiceClass | ~, + addedTo: aUser
+addUser: aUser . o
removedFrom: aUser
+ removeUser: aUser + start: aUser o IR
+ processEvent: anEvent sender: aSender + shutDown: aUser Bty

Fig. 2. Relationships between services and context aspects

are available at a given time. As we mentioned earlier, in order to improve
evolution, context aspects should be decoupled from the services layer, which is
accomplished by making an extensive use of the dependency mechanism. Fig. [I]
shows how the Service layer is dependent of every context aspect, so that it
can get a notification when there is a context change. If we dig a little inside
the services layer we will see that the relationship is established between the
user and the services: every user has a collection of context aspects, which he
is in turn dependent of. When there is a change in a context aspect the user
gets the corresponding notification. This notification is in turn propagated to
the environment (again, using the dependency mechanism) which is in charge of
triggering the service providers re-evaluation. In order to establish dependencies
we originally used the standard notification mechanism, but as the system grew
in complexity we decided to implement our own event subsystem. To do so, we
modeled a set of events, handlers and adaptors to easily trigger context changes
and configure the system response to those changes. In Fig. 2] we show a class
diagram depicting these relationships, using Location as a concrete example of
a context aspect.

4.3 Creating, Deploying and Activating Context-Aware Services

Creating New Services. New services are defined as subclasses of the abstract
class UserService and thus a specific instantiation of a service is an object that

An Object-Oriented Approach for Context-Aware Applications 31

plays the role of a Command [7]. The specific service’s behavior is defined by
overriding appropriate methods of UserService such as #addedTo: aUser (trig-
gered when the service is made available to the user), #start (triggered when the
users selects the service form the available services list), and so on. For example,
a service that presents the course’s material in the room where a lecture is taking
place would be defined as a subclass of Service, and the message #setUp: aUser
would search in the schedule for the appropriate objects to display.

Subscribing to Services. In order to access the services supplied by a service
provider, the user must subscribe to those services he is interested in. Once he is
subscribed, when the constraints imposed by the provider are met (e.g. being in a
particular location at a certain time), the services are made available to the user.
In our model, the service environment knows which services are registered, and
therefore the users can query the environment for existing services to subscribe.
Besides, when new services are added to the environment, a change notification
is broadcasted to the users so that they can take the proper action according to
the configuration they state. The default action is to show a visual notification
(a small icon) indicating that new services are available, but the user may decide
to configure the system to ignore notifications or to automatically get subscribed
to any new service that appears. It’s interesting to notice that this functionality
is provided by a standard service which has the environment as its model.

Registering Services in Specific Providers. To provide context-awareness
and to avoid the use of large rule sets, services are associated with (registered to)
specific providers. When the user’s context satisfies the provider’s constraints, all
services registered to that provider (to which the user has subscribed) are made
available. By using the concept of service providers, the architecture also achieves
the desired independence from the sensing mechanism, i.e. the circumstances
under which the services are made available to the user don’t belong to the scope
of a sensing device (e.g. receiving a beacon signal) but to logical constraints.
These logical constraints can be specified programmatically or interactively: they
can be obtained by applying a set of operators to specific context concepts
(for example, in the case of working with the location aspect, the operation
may involve rooms, corridors, etc) or defined arbitrarily in terms of the user
preferences (which can involve any context aspect).

As an example, suppose that we want to offer a location service in which a
map appears showing where the user is standing. Clearly, we would expect this
service to be available in the university building or even in the entire campus.
If we are working with symbolic location we would probably have a “Building”
location as the parent of the location tree that encompasses the rooms inside
the building. So, in order to provide the location service for the building, we
would create a new service area that is associated with the “Building” location;
with this configuration, when the user enters the building (and as long as he is
inside of it) he will have that service available. Now suppose that we would like
to extend this service to the entire campus; using our approach we would just
need to change the area covered by the service area (i.e., changing the restriction

32 A. Fortier et al.

lasp:LocationAspect LocationEventHandler

7
location: newLocation|
I contextEvent: #ocation with:oldLocation

1
|
|
|

-,
|

| changed: #ContextEventArrived |

processEvent: aContextEvent i :
|

|

|

1

1

|

i

! with: (Array with: aContextEvent with: handlers)

processEvent: anArray sender: lasp

handle: aContextEvent from: lasp on: self

activeProviders

U- providersFor: lasp

[for each active provider whose constraint doesn't hold] removeProvider: aServiceProvider

—]

[for each idle provider whose constraint s satisfied] addProvider: aServiceProvider

Fig. 3. Updating services as a response to a change in the location aspect

of the service provider), which in case of symbolic location means changing the
location “Building” to “University Campus”. It is important to notice here that
the location constraint is not expressed in terms of sensing information, but in
terms of the location model.

Service Activation. When the user’s context changes (for example, as he
moves in a location-aware environment), it triggers a notification event that
reaches a User instance in the Service layer. Then, this object interacts with
its environment to determine if a previously inactive service provider should
be active, or if a currently active provider should be removed. In case a new
provider is added to the user’s active ones, the corresponding services are made
available to him according to his subscriptions. As mentioned before, a service
is presented to a user if it is available in an active provider and if the user is
subscribed to it. A subset of these interactions is shown in Fig. Bl by means of a
UML sequence diagram, where the location aspect is used as an example.

4.4 Context as Behavior Added to the User

In Section Bl we presented a context model in which context was represented in
terms of behavior and not data. From the application point of view, context as-
pects were seen as software modules that added new behavior to the core applica-
tion, using this core functionality when needed. From the services point of view,
context aspects are responsible for deciding when a given service can be provided
to the user. Since the service model is user-centered, the context aspects are ap-
plied to the user itself, which is modeled in the service layer by the User class.
As we stated earlier, each context aspect represents a unit of behavior that is
contextually relevant to the user in a given moment. From that point of view,
when a new context aspect is added to the user, the user’s behavior is extended
with the behavior provided by the context aspect. So, apart from the behavior

An Object-Oriented Approach for Context-Aware Applications 33

defined in the User class, each particular instance of User will behave according
to his currently available context aspects. Achieving this kind of functionality
is easy in Smalltalk, since we can rely on the #doesNotUnderstand: message to
forward the message send to the available context aspects. Of course, as with
multiple inheritance, there is a problem if more than one context aspect imple-
ments the same message. This conflict can be tested when a new context aspect
is added to the user and raise a notification in case of conflict. Although this
solution is not optimal it turned out to be quite handy in practice. As a second
choice, the sender of the message can ask for a given aspect and specify explicitly
who should receive the message, very much like the Role Object [3] pattern.

5 Handling Different Sensing Mechanisms

As explained in Section B} our architecture is decomposed in two views: the
application-centered view, which has already been explained, and the sensing
view, which is in charge of feeding sensor data to the context aspects. Since
the idea of a context-aware application is to give functionality to the user in
a transparent way, context information must be gathered automatically (i.e.
sensed). To make matters worse, hardware devices used for this purpose are
usually non-standard, and the data these devices deliver is often far from what
an applications needs: while sensed data is represented as strings, numbers or
pairs, our applications are built in terms of objects. For these reasons, we consider
context sensing as an important architectural problem. In order to tackle it, we
have developed a modular design so that changes in the sensing features don’t
impact in the application. We based our design on the fact that the context model
and the way it is sensed are of different nature. In a context-aware application
several sensors may be used for determining information about a single context
aspect, and, at the same time, a single sensor’s data may be used in many ways
for inferring information on different context aspects.

As an example consider a user moving with his PDA inside a building. To de-
tect where the user is standing, we can take advantage of the Bluetooth receiver
in his PDA and place a Bluetooth beacon in every room. Each beacon can send
different room IDs, which will be interpreted to know what the user’s location
is. Now suppose there are billboards hanging on the walls inside the building,
which we would like to enhance with digital services (for example, showing the
web-version of the billboard, or having the chance to leave digital graffiti). In
order to do this we can use an infrared beacon to capture the user’s location,
this time with a finer granularity than the one provided by the Bluetooth beacon
and with the added value that we know the user is effectively pointing at the
billboard, since infrared signals are directional. In this example, the location of
the user is being sensed by two different devices at the same time, one giving
more detailed information than the other. As a second example consider the case
when the user is not carrying the receiving sensor; for instance, suppose that the
user is wearing a Bat unit [8] that constantly sends a unique identifier. This
identifier is captured by the receiver units placed on the ceiling of the rooms to

34 A. Fortier et al.

calculate the user’s location. In order to use this system we need a mechanism
that allows us to monitor the user’s location, even though the value is being
sensed by an external receiver. This means that the context model should be
independent of the physical location of the sensors; it shouldn’t matter whether
the sensors are attached to the PDA or placed on the room’s ceiling.

The examples presented above shows that the way context is represented and
the way it is sensed belong to different concerns. This is why, as shown in Fig. @]
we consider sensing as a concern that cross-cuts the context aspects layer.

1
IR Sensor
Application Model
! T ! T ! T Sensor
’ : : GPS
Location H Network | .. User data
4 Bandwidth Activity |
— 7 1 e ”
Services —> Knowledge
————————— > Dependency

Fig. 4. Sensing as a cross-cutting concern

In order to decouple context modeling from acquisition, our architecture adds
a layer between the hardware devices and the context model (see Fig.[]). The ba-
sic abstraction in this layer is the sensing aspect (modeled in the SensingAspect
class), which is basically an object that watches over a hardware sensor and re-
acts to every new data arrival. To implement this, it has a policy that determines
whether the values should be pulled or pushed from the sensor. When creating
a new sensing aspect, programmers must provide the message to be sent to the
context model when sensed data changes. To improve this task, we have created
pluggable sensing aspects that can be configured with a block, and adaptable
sensing aspects that take a message to be performed, pretty much like the stan-
dard AspectAdaptor and PluggableAdaptor from the Wrapper GUI framework.
In case a more sophisticated behavior is needed, the programmer can create his
own SensingAspect subclass.

Another important issue when using sensors is to decide whether every signal
must be sent to the application or not. In some cases we won’t need to forward
all the information that sensors deliver, avoiding cluttering the application with

-t S e > Hardware
Knowled
Context Aspect Sensing Aspects | Abstractions ——) Knowledge
---———-> Dependency

Fig. 5. Layered approach for the Sensing view

An Object-Oriented Approach for Context-Aware Applications 35

dispatcher

X Dispatcher
transformation
Transformation
+ dispatch: aValue
+ apptyTo: aValue 4}
[|
Forware p er InFr i h ErrorFilterDispatcher
NullTransformation LookupTransformation
- table : Dictionary + dispatch: aValue + dispatch: aValue + dispatch: aValue
+ apptyTo: aValue + apptyTo: aValue
pOIICV - Pali sensor.
SensingAspect S — \2
~ 1 Sensor
< ! + sensor
+ sensorValue: aValue o 1 - sensor: aSensor
+ policy]
N 2 O | £’§
+ receiver N
- dispatchValue: aSensorValue 3
PullSensingPolicy PushSensingPolicy
[|
AdaptableAspect PluggableAspect + start + newValue: aValue
- selector : Symbol - block : BlockClosure w7 ?tOFI)' - sensor: aSensor
S " 5 n + finalize
- dispatchValue: aSensorValue - dispatchValue: aSensorValue - dispaichValue: aSensorValue

receiver | ContextAspect

Fig. 6. Class diagram of the sensing aspects package

constant notifications. As an attempt to solve this problem we have introduced
the notion of dispatchers (represented in the abstract class Dispatcher) that has
the responsibility of deciding which signals are let into the system. For example,
an ErrorFilterDispatcher would be in charge of filtering those signals whose
noise level is beyond a given threshold. To complete the process of gathering
information from sensors and feeding it to the context model we need to solve
the mismatch between sensors’ data and applications’ needs. To address this
problem, we have created the Transformation abstract class. Transformations
are intended to convert atomic values delivered by sensors to full fledged objects
which will feed the context aspect. This transformation can range from simple
table lookups to complex machine reasoning processes. Fig. [6lshows the complete
class diagram of the Sensing Aspects package.

6 A Pure Object-Based Distribution Scheme

Context-aware applications generally need to share information between a set of
devices. This not only encompasses sensing devices (e.g. a server that publishes
information gathered by a weather station located in the building) but different
kind of services (e.g. location-aware messengers and reminders, shared virtual
folders, friend finders, etc.). For this reason we need a mechanism to distribute
the proposed architecture between a set of devices and let them share the in-
formation they need. Since we can’t expect to know the characteristics of every
device beforehand or the connection speed between any two devices, the distri-
bution mechanism shouldn’t impose a fixed communication schema between the
devices; as a matter of fact it should allow objects to live in different machines as
needed. As an example let’s consider again the user and his location aspect and

36 A. Fortier et al.

let’s analyze how these objects can be distributed considering that the user emits
his unique id using the Bluetooth port of his PDA. If we decide to move the
whole computation to the client device, we would model the external Bluetooth
receiver as a Proxy [7] linked to the machine that is physically connected to the
Bluetooth receiver. Each time the desktop machine receives a new signal it will
forward the received value to the client, which will then process it as explained
in the previous sections. On the other hand, if the client device can’t handle this
kind of computation, we should move as much as we can to the desktop ma-
chine, so that the information arrives as processed as possible. In this example
we could move the whole dispatching process to the desktop machine, so that
the client only receives an update when his location has changed (notice that
this also means saving network bandwidth). Following this idea we could take
this a step further and move the whole location aspect to the desktop machine,
which would be represented in the client machine as a proxy to the real object
residing in a remote machine. This means that each time the user changes his
location there would be a remote computation to find out which services are
added or removed, and as a result the instance of the User class residing in the
client device would receive the #addService: or #removeService: message. Of
course this last strategy implies a big risk: if the user gets out of the wi-fi range
or the network goes down he loses all location information.

In order to cope with the distribution concern we decided to use the Opentalk
[I77] framework and extend it to cover our needs. In the next section we will give a
brief review of the framework and then explain the extensions we’ve made so far.

6.1 Opentalk Basics

Opentalk [17] is a distribution framework for VisualWorks that gives flexible sup-
port for the development of distributed applications. To achieve this, Opentalk is
organized in a series of layers, which includes communication protocols, object ser-
vices, brokers and remote objects. The Opentalk Communication Layer provides
the basic abstractions for developing the connection protocols. These protocols can
operate on top of TCP /IP or UDP transport layers. In particular, our work is based
on TCP/IP, using the built-in support for Smalltalk-to-Smalltalk interoperability.

In our framework we have exploited the cross-platform nature of the Visual-
Works implementation to manage the issue of heterogeneous networks imposed by
mobile systems. Thanks to the different VMs available we are able to support sev-
eral operating systems running over separate hardware platforms (we are currently
working on Linux, Windows 2000 and XP on desktops and Windows CE and Mobile
on Pocket PC). A VisualWorks image can run almost identically on any supported
platfornﬂ thus allowing the arrangement of a heterogeneous network.

! In the case of Win CE or Windows Mobile deployment, we have to take into account
also those issues concerning the graphical user interface and display screen size (such
as a proper Look-&-Feel and a minimal and convenient layout of visual components).
In addition, the processor speed of the target machine and the memory footprint of
the deployed image must be taken into an account if we want the final application to
run decently.

An Object-Oriented Approach for Context-Aware Applications 37

Request Broker and Remote Messaging. Opentalk provides a complete
request broker implementation, which is combined with the Smalltalk reflective
capabilities to provide transparent remote communication between Smalltalk
images. The communication between objects residing in different environments
(images) depends on the functionality provided by those brokers. In order to be
remotely accessible, an object must be exported through a local broker, which
in turn assigns an object identifier (oid) and registers the recent exported object
on an internal table. Once the object has been exported, any remote object
containing a proper reference to this object, can collaborate with him by directly
sending normal messages. This transparency is achieved thanks to the use of
generic proxies (discussed in the following section). However, before any two
objects can remotely communicate, it is necessary to resolve the initial reference
between the two hosting images (i.e. between both request brokers), which can
be easily achieved by exporting a root object with a predefined name. Once this
is solved, subsequent communication is done transparently due to the inherent
characteristic of navigation by reachability and the use of proxies in conjunction
with the underlying machinery provided by the brokers.

The internal structure of the brokers is a bit complex, since it collaborates
with many different kind of objects to effectively allow for remote message in-
terchange. Among the main collaborators we can mention the ObjectAdaptor,
Listener, Transport and Marshaller. The object adaptor is in charge of register-
ing those objects that have been exported through the broker and to coordinate
listeners and transports. The listener is constantly waiting for new connection
requirements incoming from other hosts. When one of this requirements arrives,
the listener accepts it and creates a new transport (i.e., a new transport is cre-
ated for every connection between brokers). Every transport is in turn bound
to a specific socket and works as the entry point for receiving and delivering
remote messages. In order to accomplish this task an encoding procedure must
be done, so that remote message sends can be converted to a binary representa-
tion (i.e. a byte array). This procedure (known as marshalling) is performed by
the marshaller, who is in charge of transforming remote messages into transport
packets. Each transport will collaborate with his own marshaller and will use his
services to encode and send messages and to receive and decode them.

To mimic the message sends in the local images, brokers use a synchronic com-
munication policy. The broker that is in charge of dispatching outgoing messages
(an instance of STSTRequest) will send the remote message and wait for the re-
sponse (an instance of STSTReply). This message send will cause that in the
image where the actual object is residing a local message will be send, faking
the remote invocation as a local one. Once the message has been dispatched, the
sending image will be waiting until a response arrives or a time period expires. If
the response arrives, the returning object is decoded and control is passed back
to the object that originally sent the message.

Remote Objects and Proxies. A remote proxy [7] is a local representative for
an object (its subject) that resides in a different address space. When a message
is sent to the proxy, it automatically forwards it to its subject and waits for its

38 A. Fortier et al.

response. Thus, from the sender point of view, there is no difference between
working with local or remote objectaﬁ.

In Opentalk, the RemoteObject class performs the role of remote proxy and
maintains an indirect reference to its subject by using an instance of ObjRef,
which is basically composed of a socket address (i.e. an IP address + a port
number) and an object identifier (also known as oid). When an instance of
RemoteObject receives a message, it forwards the request to its subject by means
of the #doesNotUnderstand: mechanism; for this purpose the proxy leans on
the broker’s services, which is responsible for deliver the message through the
network. Also, whenever an object is exported (i.e. passed by referenceﬁ) from
one image to another, a new proxy is created to represent the remote object.
This instantiation task is responsibility of the local broker.

In Opentalk the concrete RemoteObject class is a subclass of Proxy, which is a
special abstract class that does not understand any messages. The RemoteObject
class automatically forwards those messages that does not understand, leading
to a generic implementation of a remote proxy. This basic implementation allows
us to apply seamless distribution to any existing application with relative little
effort. Therefore, we can postpone this decision until last moment (or when con-
sidered necessary) without worring about distribution issues on early stages of
system development. However there are some trade-offs that we must be taken
into consideration when working with this kind of distribution technique, in
particular when dealing with mobile systems. In the first place, the proxy gener-
ally implies an important network traffic, since messages are constantly flowing
through the network. Also, this approach needs a constant connection between
the images where the proxy and the subject are, not being well suited to dis-
tribute objects in networks with intermittent connections. Also, even though we
can assume having a continuous connection, in mobile applications we expect
the user to be moving around large spaces. As a consequence, accessing the host
where the subject resides can be fast in a given time, but extremely slow if the
user has moved to a place where the connection to access that host is slow. In
these cases, we would like to be able to move the subject to a host that can be ac-
cessed with less network delay. Hence, we are motivated to figure out how to take
the maximum advantage of this approach and combine it with new alternatives
in order to cope with these issues.

Pass Modes and Distribution Strategies. Opentalk provides a fixed set
of general purpose object pass modes which indicates how an object will be
distributed across images: by reference, by value, by name and by oid. A pass
mode can be seen as a strategy for object distribution, because it decides the
way in which an object should be distributed when exported to another host;
therefore, we will use interchangeably the terms pass mode and distribution
strategy. For the sake of conciseness (and because pass by name and pass by oid

2 There is a subtle issue regarding object identity and pass modes that we will not
address due to space reasons.
3 As we will see in the next section, there are many ways of distributing objects.

An Object-Oriented Approach for Context-Aware Applications 39

modes are not frequently used) we are going to describe the two most relevant
pass modes: by reference and by value. The first one is the basic proxy approach:
the subject resides in a single image and the other images have proxies that refer
to the subject. On the other hand, passing an object by value means that a copy
is sent to the requesting image. It is important to notice that this distribution
policy does not guarantee that both objects will be consistent; as a matter of
fact, passing an object by value is like creating a local copy, and then moving it
to another image, so future messages sends may alter their structures without
any restrictions or implicit synchronization.

The way an object will be passed can be decided at the class or instance
level. In order to indicate the pass mode of all the instances of a given class, the
#passMode message must be redefined in the desired class (by default all objects
are passed by reference). If we want to specify how a specific instance should be
passed across the net, the #asPassedByReference Or #asPassedByValue Imessages
can be sent to the specific instance. Sending any of these messages will end up
creating an instance of PassModeWrapper on the receiver, which will mask the
original pass mode defined in the object’s class.

As we stated before, we found Opentalk proxy distribution mechanism to be
very well suited, especially because of the transparency it provides. On the other
hand, in order to accommodate to mobile environments, we found it necessary to
enhance the framework to provide new distribution policies, which are explained
in the next section.

6.2 Opentalk Extensions

In order to accommodate our needs we devised a series of extensions to the
Opentalk framework. These extensions include traceability, migration and object
mirroring. In order to clarify the ideas that will be covered in this section we
briefly explain the main concepts:

— Traceability is the capability that an object has of knowing all the remote
references that have him as a subject. This can be seen as asking an object
for all his remote owners.

— We refer to replicas when we talk about a copy of some object that resides
in a different Smalltalk image. This doesn’t mean that there is any kind of
connection between the original object and the replica; a replica is just a
copy of the object with no synchronization mechanisms.

— Migration means moving an object from one image to another. This move-
ment must be consistent and rearrange any remote reference to update its
address to the new host (note that local references can be easily converted
by using the #become: message, while remote ones will require a more so-
phisticated mechanism).

— Mirroring refers to having an object replicated in a way that the replicas
are consistent. So, if an object is modified in an image, all the distributed
mirrors are modified to maintain the consistency.

40 A. Fortier et al.

As we will see, by adding these features, we can distribute objects in new ways
and have a flexible base to dynamically change distribution policies to adapt to
context changes.

Extensible Pass Mode Hierarchy. The first task we had to accomplish was a
redesign of the way pass modes where modeled. In the original framework, pass
modes where represented by a symbol (i.e. #reference, #value, #name, #oid),
making it impossible to delegate behavior to the pass modes themselves. To solve
this issue, pass modes are now represented as first-class objects and modeled by a
class hierarchy rooted at the PassMode class. Thanks to this first modification we
obtained a flexible way to add new pass modes. The basic pass modes are repre-
sented by the classes PassByReferenceMode, PassByValueMode, PassByNameMode and
PassBy0IDMode. Each of these classes redefines the abstract method #marshal:on:
which uses double dispatch to delegate the specific encoding of the object to a
marshaller.

In order to facilitate the creation of new pass modes, the CustomPassMode
class is defined to act as an abstract class. This class redefines the #marshal:on:
message to provide a Template Method [7], so that new pass modes only need
to redefine their specific features. This class is the root that we used to define
the new pass modes.

Traceability. Traceability is defined as the capability that an object has of
knowing all the remote references that have him as a subject. This is achieved
by knowing those places to which it was exported and then tracking those remote
proxies that are referencing it. Traceability is implemented as a special type of
passing an object by reference and is modeled by the TraceablePassMode class.

When a traceable object is exported, a local wrapper (TraceableObjectWrapper)
is created to hold a collection of the remote proxies that are referencing the tar-
get object in other hosts; we will refer to this original object as a primary copy.
When a host requests for a proxy to the primary copy, instead of creating a re-
mote object, an instance of TraceableRemoteObject is instantiated in the remote
host. This object acts basically like a standard remote object, but adds the nec-
essary behavior to notify the primary copy that a new reference to it has been
created and to notify it when the proxy has been garbage collected in order to
remove the reference. These notifications are really captured by the wrapper cre-
ated on the primary copy, which is responsible for keeping the remote references
collection.

As we will see in the next sections, by adding traceability we can choose
between the interested hosts (i.e., hosts that have a remote reference to the
primary copy) to mirror or migrate the primary copy. Also, things like distributed
garbage collection by reference counting can be easily implemented by adding
the required logic on top of the traceability mechanism.

Migration. As was introduced earlier, an object can be replicated in many other
images. Once these replicas are created there is no synchronization between
the original object and the remote replicas. To perform this remote copy, a

An Object-Oriented Approach for Context-Aware Applications 41

Replicator object is introduced. This object is in charge of coordinating the hosts
involved in the copy process, which can be triggered explicitly or by defining a
set of events related to the environment. In order to fulfill his task, a replicator
uses a Strategy [7] that allows to configure how a replica will be made. The
most basic one is the PlainReplication strategy, which just makes a copy of
the object in another image. A more interesting one is the MigrateAndRedirect
strategy, which migrates the primary copy to another image and rearranges all
the remote references to update their information about the host that now holds
the object. Also, during this process, all message sends to the primary copy are
temporarily frozen so that no inconsistencies can arise.

The migration mechanism was originally needed in order to give the user
flexibility when working with portable devices (such as PDAs or smartphones)
and desktop computers. Imagine that the user is working in his desktop using his
favorite context aware application. Suddenly, a reminder appears notifying that
he must go to the airport to catch his flight. Now the user asks his application
to shut down, but before doing so, the application tries to find the user’s PDA
in the network. In case it does, it launches the application by executing a shell
command and migrates all his primary copies. As a result, the user automatically
has the same up-to-date information in his PDA, with the additional benefit that
any remote reference will be properly updated to reflect the host migration of
the primary copy (of course, assuming that the PDA has a global connection to
the net).

Mirroring (Synchronized Replicas). In contrast with the plain replication,
the mirroring mechanism allows to keep a set of replicated objects in a consistent
state (i.e. if an instance variable of one of the objects is updated, the remote
replicas are updated to be consistent with the object). Associated to this mech-
anism, three new distribution policies are implemente(ﬂ: ForwarderPassMode,
MirrorPassMode and StubPassMode. An object that is exported under any of these
three new pass modes can be dynamically changed to any of the other (e.g. an
object passed in forwarder mode can be changed dynamically to be exported in
mirror mode). Next we present a brief description of each strategy:

Forwarder. An object exported under this pass mode will forward every mes-
sage to the primary copy, behaving like an object passed by reference. The added
value of this class is the ability of dynamically changing the distribution policy
to mirror or stub my receiving the messages #becomeMirror or #becomeStub .

Mirror. An object exported as a mirror will create copies of himself in the
other images, making sure that all the replicas are consistent with the original
object. In order to keep this consistency, a mirror object delegates the synchro-
nization mechanism to a Strategy [7], which can be specified at the class or
the instance level. At the moment we have implemented two synchronization
mechanisms:

4 These set of passing modes are inspired in the distribution strategies used by Gem-
Stone.

42 A. Fortier et al.

— A simple one, that just forwards the change to every replica. This strategy
doesn’t check if the update has been done in a consistent way, assuming
an optimistic update. Note that this can easily end up in desynchronized
objects in the case that mirrors of the same object are updated at the same
time in different images.

— A two-phase strategy, that ensures the objects consistency. In the first
phase, the object whose internal state has been updated triggers a notifi-
cation that will cause the blocking of every mirror by asking for his lock. If
all the locks can be successfully obtained, the change is propagated and the
objects are unlocked. In the case that the lock can’t be obtained a rollback
is performed.

In order to support mirrors in a transparent way the immutability and mod-
ification management mechanism present in VisualWorks is used. This mecha-
nism allows tagging an object as immutable so that a change in his state trig-
gers an exception. We use the ModificationManagement package to have a
simpler way of handling changes, by creating a subclass of ModificationPolicy
(MirroringPolicy) which triggers the mirror updates.

Stub. A stub can be seen as a special kind of proxy, that waits until someone
sends a message to it. When this happens, the stub gets replaced by a mirror,
creating in this way the notion of a lazy-mirror. In order to perform this, the stub
sends to himself the message #becomeMirror and then re-evaluates the message
that was originally sent to him. As expected, a stub can be sent the messages
#becomeMirror Or #becomeForwarder .

Dynamic Change of Distribution Policies. Distribution policies can be
changed in two granularity levels: at the class level, by redefining the #passMode
message and at the instance level by using an instance of PassModelWrapper. As
an extension to this basic mechanism, a family of distribution policies that can
be changed dynamically has been introduced (Forwarder, Mirror and Stub), al-
lowing to change the way that mirrors are synchronized. With these tools at our
hand, not only can distribution be made transparent to the programmer, but we
can also decide what is the best way to distribute a given object. As an exam-
ple, consider an object in a context-aware system whose instance variables are
constantly being updated. If this object is distributed by mirroring, we should
expect to have an important network traffic and system unresponsiveness, since
every modification implies a locking and an update. On the other hand, if we
distribute this object by using a forwarder, the network traffic will be propor-
tional to the messages sends to the primary copy and not to the instance variable
update ratio. Of course, this can in turn become a bottleneck, since many hosts
would be sending messages to a single image and asking for those messages to
be resolved remotely. In order to overcome this issue, we can even use a mixture
of distribution policies to balance the charge in a host: the primary copy can be
mirrored in a small number of hosts, and then be distributed to the rest of the
hosts by using forwarders. In this way, the load is distributed among the hosts
that have the mirrors.

An Object-Oriented Approach for Context-Aware Applications 43

7 Related Work

From the conceptual point of view, we found our model of context to fit quite
well the ideas presented by Dourish [5]. While in most approaches context is
treated as a collection of data that can be specified at design time and whose
structure is supposed to remain unaltered during the lifetime of the application,
Dourish proposes a phenomenological view in which context is considered as an
emergent of the relationship and interaction of the entities involved in a given
situation. Similarly, in our approach, context is not treated as data on which
rules or functions act, but it is the result of the interaction between objects,
each one modeling a given context concern. This idea is based on the concept
of a context aspect, that represents the behavior that is contextually relevant to
model in a specific situation.

From an architectural point of view, our work can be rooted to the Context
Toolkit [4] which is one of the first approaches in which sensing, interpretation
and use of context information is clearly decoupled. We obviously share this
philosophy though we expect to take it one step further, attacking also the ap-
plication concerns. Hydrogen [9] introduces some improvements to the capture,
interpretation and delivery of context information with respect to the seminal
work of the Context Toolkit. However, both fail to provide cues about how appli-
cation objects should be structured to seamlessly interact with the sensing layers.
Our approach proposes a clear separation of concerns between those object fea-
tures that are context-free, those that involve context-sensitive information (like
location and time) and the context-aware services. By placing these aspects in
separated layers, we obtain modular applications in which modifications in one
layer barely impact in others. To achieve this modular architecture we based
on the work of Beck and Johnson [2] in the sense that the sum of our micro-
architectural decisions (such as using dependencies or decorators) also generate
a strong, evolvable architecture.

Schmidt and Van Laerhoven [I5] proposed a middleware architecture for the
acquisition of sensor-based context information, which is separated in four dif-
ferent layers: sensors, cues, context and application. The sensors layer is where
both physical (such as cameras or active badges) and logical sensors (like system
time) are located. Data obtained from sensors is processed by cues on the next
layer, whose main function is to synthesize and abstract sensor data by using
different statistical functions. Values generated by cues are buffered in a tuple
space, which provides for inter-layer communication between the cues layer and
the context layer; then, the context layer can read this values and take the ap-
propriate actions. In this approach, the use of middleware architectures helps
decoupling the sensing hardware from context abstractions. Our approach also
places sensing mechanisms into a separate module, but it does not depend di-
rectly on any other; it is treated as a crosscutting concern of the context model,
what makes it less sensitive to system changes.

Other approaches that have been presented pay closer attention to monitor-
ing resources and consider adaptation in terms of network bandwidth, mem-
ory or battery power. Among these works we can mention Odyssey [12] which

44 A. Fortier et al.

was one of the first systems to address the problem of resource-aware adapta-
tion for mobility. In this approach there is a collaborative partnership between
the operating system and individual mobile applications, in which the former
monitors resource levels and notifies the applications of relevant changes. Then,
each application independently decides how to best adapt when notified. This
adaptation occurs when the application adjust the ﬁdelityﬁ levels of the fetched
data. Following a similar path, CARISMA is a middleware model that enables
context-aware interactions between mobile applications. The middleware inter-
acts with the underlying operating system and it is responsible for maintaining
a representation of the execution context. Context could be internal resources
(e.g. memory and battery power), external resources (e.g. bandwidth, network
connection, location, etc.) or application-defined resources (e.g. user activity or
mood). CARISMA provides an abstraction of the middleware as a customizable
service provider, so that a service can be delivered in different ways (using differ-
ent policies) when requested in different context. On the other hand, MobiPADS
presents an event notification model to allow the middleware and applications
to perform adaptation and reconfiguration of services in response to an environ-
ment where the context varies. Services (known as mobilets) are able to migrate
between client and server hosts. MobiPADS supports dynamic adaptation to
provide flexible configuration of resources to optimize the operations of mobile
applications.

Regarding distribution policies, even though not in the OO paradigm, an
interesting work is presented in GSpace [I3], which implements a shared data
space. This middleware monitors and dynamically adapts its distribution policies
to the actual use of the data in the tuple space. The unit of distribution in a
shared data space is called tuple, which is an ordered collection of type fields, each
of them containing an actual value. Additionally, in GSpace tuples are typed,
allowing the association of separate distribution policies with different tuple
types. Making an analogy, we use the object as the basic unit of distribution,
whose internal state can be seen as the data represented by a tuple. In Smalltalk,
an object belongs to a particular class which can be mapped to the notion of
type present in GSpace and assign the distribution policy at the class (type) level
and change it at run-time. In addition, we provide the functionality to assign
distribution policies in an object basis.

8 Concluding Remarks and Further Work

We have presented an architecture for developing context-aware applications
that emphasizes in a clear separation of concerns. Also, by using and extending
the dependency mechanism to connect different layers we have been able to avoid
cluttering the application with rules or customization code that would result in
applications that are difficult to maintain.

5 Fidelity is the degree to which data presented at a client matches the reference copy
in the server.

An Object-Oriented Approach for Context-Aware Applications 45

From the context modeling point of view, we have shown a behavior-oriented
representation, where context is built from different context aspects. Those as-
pects provide the behavior that is contextually relevant in a given moment.
This model, with the flexibility provided by a fully reflective environment as
Smalltalk, provides the kind of dynamic adaptation that we consider context-
aware applications need. We have also founded many things in common with the
MVC architecture when we look at the way that sensing is separated from the
context aspects and context aspects from services. This isn’t surprising at all,
since the reasons and the aims are basically the same: allow different layers of
a system to evolve independently, without propagating changes to other layers.
Finally, by extending the Opentalk framework we are able to choose between
different strategies to distribute objects, making it possible to accommodate the
system to the needs of mobile applications.

We are now working in the following issues:

— As mentioned in the introduction, we consider that next-generation con-
text-aware applications will have such an extent that no single company or
development group will be able to handle on its own. To cope with this
issue, an integration platform is needed to allow software modules created
by independent groups to interact seamlessly.

— Characterize object behavioral patterns, so that we can discover general rules
for distributing objects with a given distribution policy.

— Adapt distribution policies to context. For example, a context aspect can be
used to represent the network bandwidth, so that when it becomes lower than
a certain threshold the distribution policy of predefined objects is changed
(e.g. from forwarder to mirror to reduce the network traffic).

— Supporting intermittent network connections.

— We started a research track on Human-Computer Interaction, since we found
that designing usable context-aware applications is not an easy task. The in-
herent limitations of mobile devices, such as small screens, tiny keyboards
and lack of resources makes the design of usable GUIs rather difficult, so
other non-graphical solutions must be explored, like audio or tactile Uls.
Additionally, users of context-aware applications tend to be constantly mov-
ing and easily distracted, what makes usability a determining factor.

References

1. Gregory D. Abowd. Software engineering issues for ubiquitous computing. In ICSFE
’99: Proceedings of the 21st international conference on Software engineering, pages
75-84, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

2. Kent Beck and Ralph E. Johnson. Patterns Generate Architectures. In ECOOP,
pages 139-149, 1994.

3. D. Bumer, D. Riehle, W. Siberski, and M. Wulf. Role Object Patterns, 1997.

4. Anind Kumar Dey. Providing Architectural Support for Building Context-Aware
Applications. PhD thesis, Georgia Institute of Technology, 2000.

5. Paul Dourish. What we talk about when we talk about context. Personal and
Ubiquitous Computing, 8(1):19-30, 2004.

46

10.

11.

12.

13.

14.

15.

16.

17.

A. Fortier et al.

. Andrés Fortier, Javier Mufioz, Vicente Pelechano, Gustavo Rossi, and Silvia
Gordillo. Towards an Integration Platform for AmI: A Case Study, 2006. To
be prsented in the “Workshop on Object Technology for Ambient Intelligence and
Pervasive Computing”, ECOOP 2006, 4/7/2006.

. Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, 1995.

. Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster. The
anatomy of a context-aware application. Wirel. Netw., 8(2/3):187-197, 2002.

. Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef

Altmann, and Werner Retschitzegger. Context-Awareness on Mobile Devices - the

Hydrogen Approach. In HICSS, page 292, 2003.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view

controller user interface paradigm in Smalltalk-80. J. Object Oriented Program.,

1(3):26-49, 1988.

U. Leonhardt. Supporting Location-Awareness in Open Distributed Systems. PhD

thesis, Dept. of Computing, Imperial College, 1998.

Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton,

Jason Flinn, and Kevin R. Walker. Agile application-aware adaptation for mobility.

In SOSP ’97: Proceedings of the sizteenth ACM symposium on Operating systems

principles, pages 276-287, New York, USA, 1997. ACM Press.

Giovanni Russello, Michel R. V. Chaudron, and Maarten van Steen. Dynamic

Adaptation of Data Distribution Policies in a Shared Data Space System. In

CoopIS/DOA/ODBASE (2), pages 1225-1242, 2004.

Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit: Aiding

the Development of Context-Enabled Applications. In CHI, pages 434-441, 1999.

Albrecht Schmidt and Kristof Van Laerhoven. How to build smart appliances.

IEEE Personal Communications, pages 66 — 71, 2001.

Joao Pedro Sousa and David Garlan. Aura: an Architectural Framework for User

Mobility in Ubiquitous Computing Environments. In WICSA, pages 29-43, 2002.

Visualworks Opentalk Developer’s Guide - Part Number: P46-0135-05.

Unanticipated Partial Behavioral Reflection

David Réthlisberger!, Marcus Denker!, and Eric Tanter?

b Software Composition Group
University of Bern — Switzerland
2 Center for Web Research/DCC
University of Chile, Santiago — Chile

Abstract. Dynamic, unanticipated adaptation of running systems is of
interest in a variety of situations, ranging from functional upgrades to on-
the-fly debugging or monitoring of critical applications. In this paper we
study a particular form of computational reflection, called unanticipated
partial behavioral reflection, which is particularly well-suited for unanti-
cipated adaptation of real-world systems. Our proposal combines the dy-
namicity of unanticipated reflection, i.e., reflection that does not require
preparation of the code of any sort, and the selectivity and efficiency
of partial behavioral reflection. First, we propose unanticipated partial
behavioral reflection which enables the developer to precisely select the
required reifications, to flexibly engineer the metalevel and to introduce
the meta behavior dynamically. Second, we present a system supporting
unanticipated partial behavioral reflection in Squeak Smalltalk, called
GEPPETTO, and illustrate its use with a concrete example of a Seaside
web application. Benchmarks validate the applicability of our proposal
as an extension to the standard reflective abilities of Smalltalk.

1 Introduction

Dynamic adaptation of a running application makes it possible to apply changes
to either the structure or execution of the application, without having to shut
it down. This ability is interesting for several kinds of systems, e.g., context-
aware applications, long-running systems that cannot afford to be halted, or for
monitoring and debugging systems on-the-fly. Adaptation can be considered a
priori by adopting adequate design patterns such as the strategy pattern [IJ,
but such anticipation is not always possible nor is it desirable: potentially many
parts of an application may have to be updated at some point. This is an area
in which metaobject protocols, by providing implicit reification of some parts of
an application [2], are very useful [3L4[5].

Reflection in programming languages is a paradigm that supports computa-
tions about computations, so-called metacomputations. Metacomputations and
base computations are arranged in two different levels: the metalevel and the
base level [6L[7]. Because these levels are causally connected any modification
to the metalevel representation affects any further computations on the base
level [§]. In object-oriented reflective systems, the metalevel is formed in terms
of metaobjects: a metaobject acts on reifications of program elements (execution

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 47/65| 2007.
© Springer-Verlag Berlin Heidelberg 2007

48 D. Rothlisberger, M. Denker, and E. Tanter

or structure). If reifications of the structure of the program are accessed, then
we talk about structural reflection; if reifications deal with the execution of the
program, then we are referring to behavioral refiection.

This paper is concerned with a particular form of behavioral reflection, since
Smalltalk already supports powerful structural reflective mechanisms. Follow-
ing the work of McAffer on metalevel engineering [9], we adopt an operational
decomposition of the metalevel: reifications represent occurrences of operations
denoting the activity of the base program execution. Examples of operations are
message sending, method execution, and variable accesses. An occurrence of an
operation is a particular event (e.g., a particular sending of a message).

We focus on two particular enhancements of behavioral reflection that make
it more appropriate in real-world systems. First, unanticipated behavioral re-
flection (UBR) enables the deployment of metaobjects affecting the behavior of
a program while it is already running. This makes it possible to fully support
unanticipated software adaptation [4]. Second, an admitted issue of behavioral
reflection is its overhead in terms of efficiency: jumping to the metalevel at
runtime — reifying current computation and letting a metaobject perform some
metalevel behavior — is powerful but costly. Partial behavioral reflection (PBR)
has been proposed to overcome this issue, by letting users precisely select what
needs to be reified, and when [I0]. Furthermore, PBR allows for flexible engi-
neering of the metalevel, making it possible to design a concern-based metalevel
decomposition (i.e., where one metaobject is in charge of one concern in the
base application) rather than the typical entity-based metalevel decomposition
(e.g., one metaobject per object, or one metaobject per class). Hence it is pos-
sible to reuse or compose metaobjects of different concerns which greatly eases
the engineering of the metalevel [9L[T0].

In this paper we propose unanticipated partial behavioral reflection (UPBR)
which allows us to insert reflective behavior at runtime into a system (the “un-
anticipated” in this definition). The reifications are precisely selectable in spatial
(which occurrences of which operations) and temporal (when those occurrences
are reified) dimensions (the “partial” in UPBR). The metalevel behavior is flex-
ibly engineered by means of fine-grained protocols and selection possibilities
that supports gathering of heterogeneous execution points (i.e., occurrences of
different operations in different classes and methods).

The contributions of this paper are (a) a motivation for the need of unanti-
cipated partial behavioral reflection (UPBR), (b) an implementation of UPBR
in Squeak Smalltalk, called GEPPETTO, (¢) an illustration of the use of UPBR
in the detection and resolution of a performance bottleneck in an application,
without the need to actually stop the application. This is unique because the ex-
isting proposals of UBR do not fully support PBR, and reciprocally, the existing
systems that truly support PBR are not able to provide full UBR.

The paper is organized as follows: in the next section we describe a running
example that serves as the baseline for our motivation and illustration of our
proposal. SectionBlthen discusses existing reflective support in Smalltalk, as well
as the MetaclassTalk extension, followed by an overview of proposals for UBR

Unanticipated Partial Behavioral Reflection 49

(Iguana/J) and PBR (Reflex). In Section Ml we describe how we establish an
efficient and expressive approach for UPBR in Smalltalk using runtime bytecode
manipulation [II]. Section is then dedicated to a description of how to use
GEPPETTO, the framework providing UPBR in Smalltalk, by solving our running
example. We describe the design of GEPPETTO in more detail in Section
Section [f discusses some implementation issues and in Section [we report on
some benchmarks validating the applicability of GEPPETTO. Section [§ concludes
and highlights directions for future work.

2 Running Example

Let us consider a collaborative website (a Wiki), implemented using the Seaside
web framework [12]. When under high load, the system suffers from a perfor-
mance problem. Suppose users are reporting unacceptable response times. As
providers of the system, our goal is to find the source of this performance prob-
lem and then fix it. First, we want to get some knowledge about possible bot-
tlenecks by determining which methods consume the most execution time. A
simple profiler shall be applied to our Wiki application, but it is not possible
to shutdown the server to install this profiler. During the profiling our users
should still be able to use the Wiki system as usual. Furthermore, once all the
necessary information is gathered, the profiler should be remowved entirely from
the system, again without being forced to halt the Wiki. We have also the strict
requirement to profile the application in its natural environment and context,
because unfortunately the performance bottleneck does not seem to occur in a
test installation.

To profile method execution we use simple reflective functionalities. We just
need to know the name and arguments of the method being executed, the time
when this execution started and the time when it finished to gather statisti-
cal data showing which methods consume the most execution time. During the
analysis of the execution time of the different methods we see that some very
slow methods can be optimized by using a simple caching mechanism. We then
decide to dynamically introduce a cache for these expensive calculations in order
to solve our performance problem.

As we see in this simple but realistic example, the ability to use reflection is of
wide interest for systems that cannot be halted but nonetheless require reflective
behavior temporarily or permanently. Furthermore, this example proves that an
approach to reflection has to fulfill two important requirements to be applicable
in such a situation: first, the reflective architecture has to allow unanticipated
installation and removal of reflective behavior into an application at runtime. A
web application or any other server-based application can often not be stopped
and restarted to install new functionality. Moreover, the use of reflection cannot
be anticipated before the application is started, hence a preparation of the ap-
plication to support the reflective behavior that we may want to use later is not
a valid alternative here. So the reflective mechanisms have to be inserted in an
unanticipated manner. Second, in order to be able to use reflection in a durable
manner (e.g., for caching) in a real-world situation, the reflective architecture

50 D. Rothlisberger, M. Denker, and E. Tanter

has to be efficient. This motivates the need for partial reflection allowing the pro-
grammer to precisely choose the places where reflection is really required and
hence minimizing the costs for reflection by reducing the amount of costly reifi-
cations occurring at runtime. So to sum up, this example requires unanticipated
partial behavioral reflection to be solved.

3 Related Work and Motivation

As discussed earlier, changing behavior reflectively at runtime is of great interest
for all applications and systems that need to run continuously without interrup-
tion, such as servers which provide mission-critical applications. It should be
possible to analyze and change the behavior of such a system without the need
of stopping and restarting it.

We choose the Smalltalk [13] dialect Squeak [I4] to implement a dynamic
approach to reflection which supports unanticipated partial behavioral reflection
(UPBR), because Squeak represents a powerful and extensible environment, well-
suited to implement and explore the possibilities of UPBR. Before presenting
our proposal, we discuss the current situation of reflective support in standard
Smalltalk-80 as well as in the MetaclassTalk extension. We also discuss very
related proposals formulated in the Java context, both for unanticipated behav-
ioral reflection and for partial behavioral reflection.

3.1 Reflection in Smalltalk-80

Smalltalk is one of the first object-oriented programming languages providing
advanced reflective support [I5]. The Smalltalk approach to reflection is based
on the metaclass model and is thus inherently structural [7]. A metaclass is
a class whose instances are classes, hence a metaclass is the metaobject of a
class and describes its structure and behavior. In Smalltalk, message lookup
and execution are not defined as part of the metaclass however. Instead they
are hard-coded in the virtual machine. It is thus not possible to override in a
sub-metaclass the method which defines message execution semantics. While not
providing a direct model for behavioral reflection, we can nevertheless change
the behavior using the message-passing control techniques presented in [I6], or
method wrappers [I7]. Also, the Smalltalk metamodel does not support the
reification of variable accesses, so the expressiveness of behavioral reflection in
current Smalltalk is limited.

Although reflection in Smalltalk can inherently be used in an unanticipated
manner, the existing ad hoc support for behavioral reflection in Smalltalk is not
efficient and does not support fine-grained selection of reification as advocated
by partial behavioral reflection (PBR) [10]. For both reasons (limited expressive-
ness and lack of partiality), we have to extend the current reflective facilities of
Smalltalk: this is precisely the aim of this paper.

Unanticipated Partial Behavioral Reflection 51

3.2 Extended Behavioral Reflection in Smalltalk: MetaclassTalk

MetaclassTalk [I8,[19,20] extends the Smalltalk model of metaclasses by actu-
ally having metaclasses effectively define the semantics of message lookup and
instance variable access. Instead of being hard-coded in the virtual machine, oc-
currences of these operations are interpreted by the metaclass of the class of the
currently-executing instance. A major drawback of this model is that reflection
is only controlled at class boundaries, not at the level of methods or opera-
tion occurrences. This way MetaclassTalk confines the granularity of selection
of behavioral elements towards purely structural elements. As Ferber says in [7]:
“metaclasses are not meta in the computational sense, although they are meta
in the structural sense”.

Besides the lack of fine-grained selection, MetaclassTalk does not allow for
any control of the protocol between the base and the metalevel: it is fixed and
standardized. It is not possible to control precisely which pieces of information
are reified: MetaclassTalk always reifies everything (e.g., sender, receiver and
arguments in case of a message send). Recent implementations of the Meta-~
classTalk model limit the number of effective reifications by only calling the
metaclass methods if the metaclass indeed provides changed behavior. But even
then, once a metaclass defines a custom semantics for an operation, all occur-
rences of that operation in all instances of the the class are reified. Hence Meta-
classTalk provides a less ad-hoc means of doing behavioral reflection than in
standard Smalltalk-80, but with a very limited support for partial behavioral
reflection.

3.3 Unanticipated Behavioral Reflection: Iguana/J

Iguana/J is a reflective architecture for Java [4] that supports unanticipated
behavioral reflection, and a limited form of partial behavioral reflection.

With respect to unanticipated adaptation, with Iguana/J it is possible to
adapt Java applications at runtime without being forced to shut them down and
without having to prepare them before their startup for the use of reflection.
However to bring unanticipated adaptation to Java, Iguana/J is implemented
via a native dynamic library integrated very closely with the Java virtual ma-
chine via the Just-In-Time (JIT) compiler interface [4]. This means that the
Iguana architecture is not portable between different virtual machine implemen-
tations: e.g., the JIT interface is not supported anymore on the modern HotSpot
Java virtual machine. Conversely, we aim at providing UPBR for Smalltalk in a
portable manner, in order to widen the applicability of our proposal.

With respect to partiality, Iguana/J supports fine-grained metaobject proto-
cols (MOPs), offering the possibility to specify which operations should be rei-
fied. However, precise operation occurrences of interest cannot be discriminated,
nor can the actual communication protocol between the base and metalevels
be specified. This can have unfortunate impact on performance, since a com-
pletely reified occurrence is typically around 24 times slower than a non-reified

one [4].

52 D. Rothlisberger, M. Denker, and E. Tanter

3.4 Partial Behavioral Reflection: Reflex

A full-fledged model of partial behavioral reflection was presented in [I0]. This
model is implemented in Reflex, for the Java environment.

Reflex fully supports partial behavioral reflection: it is possible to select ex-
actly which operation occurrences are of interest, as well as when they are of
interest. These spatial and temporal selection possibilities are of great advan-
tage to limit costly reification. Furthermore, the exact communication protocol
between the base and metalevel is completely configurable: which method to
call on the metaobject, pieces of information to reify, etc. The model of links
adopted by Reflex, which consists of an explicit binding of a cut (set of op-
eration occurrences) and an action (metaobject), also gives total control over
the decomposition of the metalevel: a given metaobject can control a few oc-
currences of an operation in some objects as well as some occurrences of other
operations in possibly different objects. Hence metalevel engineering is highly
flexible, which makes it possible to directly support a concern-based metalevel
decomposition, and this is precisely what is required to support aspect-oriented
programming [T0L2T].

The limitation of Reflex however lies in its implementation context: being
a portable Java extension, Reflex works by transforming bytecode. Hence, al-
though reflective behavior occurs at runtime, reflective needs have to be an-
ticipated at load time. This means that Reflex does not allow a programmer
to insert new reflective behavior affecting already-loaded classes into a running
application. Instead, the programmer is forced to stop the application, define
the reflective functionality required and to reload the application to insert this
metabehavior. Links can be deactivated at runtime, but at a certain residual
cost, because the bottom line in Java is that class definitions cannot be changed
once loaded.

3.5 Motivation

As we have seen in this section, although unanticipated partial behavioral re-
flection is highly attractive, no current proposals provide it. Smalltalk-80 is not
well-suited for behavioral reflection, MetaclassTalk and provides only a limited
possibility of metalevel engineering, Iguana/J has limited partiality and imple-
mentation limitations, and Reflex has limited dynamicity. Our proposal, a reflec-
tive extension of Squeak supporting UPBR called GEPPETTO, implements the
UBR features of Tguana/J and the PBR features of Reflex to form a powerful,
open framework for UPBR which extends, enhances and completes the reflective
model of Smalltalk in a useful and efficient way.

4 Unanticipated Partial Behavioral Reflection for
Smalltalk

We first overview the model of partial behavioral reflection adopted by GEPPETTO,
then discuss how we use bytecode manipulation to achieve unanticipation, and

Unanticipated Partial Behavioral Reflection 53

then show how partial behavioral reflection can help to solve the problem intro-
duced in Section[2

4.1 Partial Behavioral Reflection in a Nutshell

GEPPETTO adopts the model of partial behavioral reflection (PBR) presented
in [I0], which we hereby briefly summarize. This model consists of explicit links
binding hooksets to metaobjects (Figure [II).

Q -------- metaobject
1
liNks -esezzzzsssl e active_n.ion
""""""""" condition
x X
X X XD Lo hookset

Fig. 1. Links are explicit entities bindings hooksets (at the base level) to metaobjects,
possibly subject to activation conditions

A hookset identifies a set of related operation occurrences of interest, at the
base level. A metaobject is a standard object that is delegated control over a
partial reification of an operation occurrence at runtime. A link specifies the
causal connection between a hookset (base level) and a metaobject (metalevel).
When occurrences of operations are matched by its hookset, the link invokes a
method on the associated metaobject, passing it pieces of reified information.
Exactly which method is called, and which pieces of information are passed, is
specified in the link itself. So, the link specifies the expected metaobject protocol,
and the metaobject can be any object fulfilling this protocol.

Several other attributes further characterize a link, such as the control that is
given to the metaobject (i.e., that of acting before, after, or around the inter-
cepted operation occurrence). A dynamically-evaluated activation condition can
also be attached to the link, in order to determine if a link applies or not depend-
ing on any dynamically-computable criteria (e.g., the amount of free memory or
the precise class of the currently-executing object).

As mentioned earlier, PBR achieves two main goals: (1) highly-selective
reification, both spatial (which occurrences of which operation) and temporal
(thanks to activation conditions), and (2) flexible metalevel engineering thanks
to fine-grained protocol specification and the fact that a hookset can gather het-
erogeneous execution points (i.e., occurrences of different operations in different
entities).

The following short example illustrates the above definitions. Recall the slow
collaborative website mentioned in section[2l To profile this application we intro-
duce dynamically a profiler analyzing the method #toughWork: which we suspect
of being responsible for the performance issues. First, we select this method by

54 D. Rothlisberger, M. Denker, and E. Tanter

defining a hookset. This hookset also selects the operation to be reified, in this
case the evaluation of the method #toughWork:

toughWorks := Hookset inClass: '"WikiCore' inMethod: #toughWork.
toughWorks operation: MethodEval.

Second, we specify the link which bridges the gap between the base level
(i.e., method #toughWork) and the metalevel (i.e., the metaobject, an instance
of class Profiler). The link also describes the call to the metaobject, i.e., which
method to invoke on the metaobject, specified by passing a metalevel selector.

cache := Link id: #cache hookset: toughWorks metaobject: Profiler new.
cache control: Control around.
cache metalevelSelector: #profile:.

After having installed this link by executing cache install the method #profile:
of the metaobject will be executed on every call to method #toughWork: of class
WikiCore. The developer can provide an arbitrarily complex implementation of
the profiler metaobject. See section for a more elaborated version of this
profiling example.

4.2 Bytecode Manipulation for Unanticipated Behavioral Reflection
in Smalltalk

To enable unanticipated partial behavioral reflection in Squeak, the first step is
to realize the model for partial reflection as described above. As we have seen in
Section B} Smalltalk (and thus Squeak) does not support behavioral reflection
properly. To introduce behavioral reflection in a system that does not support it,
we can either modify the interpreter (or virtual machine) or transform the code of
programs. Modifying the interpreter necessarily sacrifices portability, unless the
standard interpreter is actually provided as a sufficiently-open implementation.

As Squeak is not implemented using an open interpreter, we use the program
transformation approach. We can operate either on source code or on bytecode,
but the important thing is, transformation should possibly be done while the
program is running. The most appropriate way is arguably to work on bytecode,
because it does not require the source code to be present. Squeak by itself does
not however support runtime bytecode manipulation appropriately. Fortunately,
most of the authors have been involved in BYTESURGEON, a system for runtime
bytecode manipulation in Squeak [IT].

Following the principles of the implementation of Reflex for Java, we can
therefore introduce reflective abilities via insertion of hooks into bytecode. But
as opposed to Reflex, in Squeak this can be done at runtime. Since Smalltalk
fully supports structural reflection at runtime, and BYTESURGEON extends these
structural abilities with method body transformation, we can dynamically in-
troduce selective reflective abilities in running programs.

Unanticipated Partial Behavioral Reflection 55

4.3 Solving the Running Example with Geppetto

To illustrate the use of GEPPETTO, we now explain how to solve the problem
introduced in Section 2l In order to find out where the performance issue comes
from, we start by elaborating a metaobject protocol to profile the Wiki applica-
tion. Once we identified the expensive methods that can be cached, we introduce
a caching mechanism with GEPPETTO.

Profiling MOP. Defining and introducing dynamically reflective behavior into
an application consists of three steps: first, the specification of the places where
metabehavior is required (e.g., in which classes and methods, for which ob-
jects) by configuring a hookset. Second, the definition of the metaobject protocol
(e.g., which data is passed to which metaobject) by setting up one or more links.
Third and finally, the installation of the defined reflective functionality.

For profiling method execution times of our Wiki application, we need to
define a link, binding the appropriate hookset to a Profiler metaobject. The
hookset consists of all method evalution occurrences in all classes of the Wiki
application. Hence the hookset is defined as follows:

allExecs := Hookset new.
allExecs inPackage: "Wiki'; operation: MethodEval.

All classes of the Wiki package are of interest, and any occurrences of a method
evaluation as well.

Now we have to specify which method of the metaobject has to be called,
and when. In order to be able to determine the execution time of a method, the
profiler acts around method evaluations, recording the time at which execution
starts and ends, and computing the execution time. The link, called profiler,
know the metaobject to invoke, an instance of class Profiler:

profile := Link id: #profiler hookset: allExecs metaobject: Profiler new.
profile control: Control around.

The profiler therefore needs to receive as parameters the selector being called,
the currently-executing instance, and the arguments. Its method to call is thus
profileMethod:in:withArguments:. This protocol is described by sending the fol-
lowing message to the profile link:

profile metalevelSelector: #profileMethod:in:withArguments:
parameters: {Parameter selector. Parameter self. Parameter arguments.}
passingMode: PassingMode plain.

The class Parameter is used to describe exactly which information should be
reified and how it is passed to the meta level. See Section [l for more information.

Profiler is a conventional Smalltalk class, whose instances are in charge of
handling the task of profiling. For the sake of conciseness, we do not explain the
implementation of such a profiler. Finally, to effectively install the link, we just
need to execute:

profile install.

56 D. Rothlisberger, M. Denker, and E. Tanter

and GEPPETTO inserts all required hooks. From now on, all method executions
in the Wiki application get reified and the Profiler metaobject starts gathering
data.

Now suppose that based on the gathered data, we determine that a particular
method is indeed taking much time: #toughWork: of our Wiki Worker objects.
It fortunately happens that this method can seemingly benefit from a simple
caching mechanism. We can now completely remove the profiling functionality
from the Wiki, going back to normal execution, without reification at all. This
is achieve by simply executing:

profile uninstall.

GEPPETTO then dynamically removes all hooks from the application code, hence
further execution is not subject to any extra slowdown at all.

Caching MOP. We now explain how the caching functionality is dynamically
added with GEPPETTO. First, we define the hookset, and then the link:

toughWorks := Hookset new.
toughWorks inClass: Worker; inMethod: #toughWork:; operation: MethodEval.

cache := Link id: #cache hookset: toughWorks metaobject: Cache new.
cache control: Control around.
cache metalevelSelector: #cacheFor:

parameters: {Parameter argl}

passingMode: PassingMode plain.

The sole piece of information that is reified is the first argument passed to the
#toughWork: method, denoted with Parameter argl.

Cache is a Smalltalk class whose instances manage caching (based on single
parameter values). In the #cacheFor: method, we first check if the cache contains
a value for the passed argument. If so, this value is returned by the metaobject.
Else, the metaobject proceeds with the replaced operation of the base level, takes
the result answered by this operation via #proceed and returns this value after
having stored it into the cache:

cacheFor: arg
| result |
(self cacheContains: arg) ifTrue: [“self cacheAt: arg].
result := self proceed.
self cacheAt: arg put: result.
“result

In order to be able the to proceed with the original operation the class of the
metaobject has to inherit from the generic class ProceedMO. Every instance of
subclasses of ProceedMO is allowed to proceed with the replaced operations.

Installing the cache is simply done by executing cache install. GEPPETTO
inserts the necessary hooks in the code, and from then on, all evaluations of the
#toughWork: method are optimized by caching.

Unanticipated Partial Behavioral Reflection 57

Although this example is pretty straightforward, it illustrates well the point of
UPBR: one can easily add reflective features at runtime, with the possibility to
completely remove them at any time. This fosters incremental and prototypical
resolution of problems such as the one we have illustrated. For instance, if it turns
out that the introduced caching is not effective enough, it can be uninstalled,
and a more elaborate caching can be devised.

5 Geppetto Design

GEPPETTO instantiates the model of partial behavioral reflection previously pre-
sented, as summarized on Figure @ A link binds a hookset to a metaobject,
and is characterized by several attributes. A hookset specifies the operation it
matches occurrences of, which can be either MethodEval, MsgSend, InstVarAccess
or TempAccess. Hooksets can also be composed as will be explained later.

Spatial selection of operation occurrences in GEPPETTO can be done in a
number of ways, as illustrated on Table [[l Eventually, occurrences are selected
within method bodies (or boundaries), by applying an operation selector, i.e., a
predicate that can programmatically determine whether a particular occurrence
is of interest or not. Coarser levels of selection are provided to speedup the
selection process. First of all, one can eagerly specify the operation of which
occurrences may be of interest. Furthermore, one can restrict a hookset to a
given package, to a set of classes (using a class selector), and/or to a set of
methods (using a method selector). Convenience methods are provided when an
enumerative style of specification is preferred.

Thus far, hooksets are operation-specific. Like in Reflex, GEPPETTO supports
hookset composition, so a hookset can match occurrences of different operations.
Hooksets can be composed using union, intersection, and difference.

If some hooks of different hooksets conflict with each other, e.g., more than
one hookset affects a particular occurrence of a message send in a given method,
then these hooks are automatically composed by GEPPETTO. In a composed

CallDescriptor

selector 1 Link 1
parameters metaobject

passingMode

MethodEval

BeforeAfter 1 ; | } ,
Control Scope Activation
_|> Condition

Fig. 2. Class diagram of GEPPETTO design

58

D. Rothlisberger, M. Denker, and E. Tanter

Table 1. Spatial Selection in GEPPETTO

Selection Level Example

Package hookset inPackage: "Wiki’
Class hookset classSelector: [:class |class superclass = MyClass]
hookset inClasses: { MyClass. YourClass. }
Method hookset methodSelector: [:meth |meth selector = #hello]
hookset inMethods: { #hello. #bye. }
Operation hookset operation: MsgSend

Operation Occurrence hookset operationSelector: [:send | send selector = #size]

hook every single hook is executed in sequence in the order of their installation
time. See Section [6.3] for details about hook composition.

A Link object is created by giving an identifier, the hookset, and by specifying

how the metaobject instance(s) are to be obtained.

link := Link id: #profiler hookset: hs metaobjectCreator: [Profiler new]

The block given for the metaobject creator is evaluated to bootstrap metaobject
references. As a shortcut, one can directly give a metaobject instance, instead

of

a block; the given instance will then be shared among entities affected by the

link.

A link is further characterized by several attributes:

— Control defines when the metaobject associated to the link is given control

over an operation occurrence: it can be either Before, After, BeforeAfter or
Around. BeforeAfter means that the metaobject is called before and after
the original operation, whereas Around replaces the operation. The replaced
operation then can be executed by calling proceed, if the metaobject is an
instance of a subclass of ProceedMO.

— Scope determines the association scheme of a metaobject with respect to

base entities. For instance, if the link has object scope, then each instance
affected by the link has a dedicated metaobject for the link. The scope can
also be class (one metaobject per class), or global (a unique metaobject for
the link).

— an ActivationCondition is a dynamically-evaluated predicate that determines

if a link is active (that is, whether reification and delegation to the metaob-
ject effectively occurs). A typical usage of an activation condition is to obtain
object-level reifications: the condition can be used as a discriminator of in-
stances that are affected or not by the considered link.

— a CallDescriptor defines the communication protocol with the metaobject. A

call descriptor embeds the selector of the message to be sent, the parameters
to pass as well as how they are passed (i.e., as plain method arguments,
packed into an array, or embedded in a wrapper object). Table [lists all
possible parameters depending on the reified operation.

Finally, for a link to be effective, it has to be dynamically installed by sending

the install message to it. At any time, a link can be uninstalled via uninstall. Links

Unanticipated Partial Behavioral Reflection 59

Table 2. Supported reified information

Operation Reified Data Description
All Operations context execution context
self the object
control before, after or replace
Message Send/ arguments arguments as an array
Method Evaluation argX X" argument
sender sender object
senderSelector sender selector
receiver receiver object
selector selector of method
result returned result (after only)
Temp/InstVar Access name name of variable
offset offset of variable
value value of variable
newvalue new value (write only)

have identifiers, which can be used to retrieve them from a global repository at
any time (Link get: #linkID).

6 Implementation Issues

In this section we explain a crucial part of the implementation of GEPPETTO: the
installation of hooks into the bytecode. As explained earlier, we have to dynam-
ically install hooks at runtime to be able to apply reflection in an unanticipated
manner into a running system. Therefore, we require a means to manipulate
bytecode at runtime. For that purpose we use BYTESURGEON, a framework for
runtime manipulation of bytecode in Squeak [IT]. Using this tool we do not have
to work directly with bytecode. Instead we write our hooks in normal Smalltalk
code, which we then pass to BYTESURGEON. Internally, BYTESURGEON will
compile our code to bytecode and insert the resulting bytecode into compiled
methods.

6.1 Adapting Method Binaries

To adapt the binary code of method, we first select the method in which we
want to change the bytecode (recall that a method is defined as the combination
of a class and a selector, e.g., WikiPage>>#document). Second, we instrument
this method with one of the instrumentation methods added by BYTESURGEON
to compiled methods, e.g., #instrumentSends: or #instrumentlnstVars:, to access
all the specific operations in a method, i.e., message sends or instance variables
accesses, respectively. These instrumentation methods expect a block as single
argument. In this block we have access to a block argument which denotes the
current operation occurrence object. For a message send we get access to an

60 D. Rothlisberger, M. Denker, and E. Tanter

instance of IRSend (this is part of the intermediate representation on which
BYTESURGEON is based [I1]).

Below is a short example showing how BYTESURGEON can be used to insert
a simple piece of Smalltalk code into the method #document of class WikiPage:

(WikiPage>>#document) instrumentSends: [:send |
send selector = #size ifTrue: [send replace: '7']]

In this example we replace every send of the #size message occurring in the
method #document of class WikiPage to simply return the constant 7. This ex-
ample shows how to access different operations in a method (operation selection,
i.e., message sending) and how to select different operation occurrences (intra-
operation selection; i.e., message sends invoking #size) in a method.

During the instrumentation of a method the defined block is evaluated for
every such operation in that method. To do intra-operation selection it is enough
to specify a condition in the block, such as asking if the selector of an IRSend is
of interest. Only if this condition is met the corresponding operation occurrence
is adapted, either by replacing it or by inserting code before or after it. The
code to be inserted is written as normal Smalltalk code directly in a string. In
this string we can refer to dynamic information by using meta variables, such
as <meta: #receiver> or <meta: #arguments> to reference respectively the
receiver or the arguments of a method (more in [IT]).

6.2 Structure of a Hook

In GEPPETTO, hooks are inserted in bytecode to provoke reification and delega-
tion at runtime, where and when needed. The execution of a hook is a three-step
process:

— Checking if the link is active for the currently-executing object;

— Reifying dynamic information and packing this information as specified by
the call descriptor of the link;

— Performing the actual delegation to the metaobject, by sending the message
specified in the call descriptor, with the corresponding reified information.

When a link has to be installed, GEPPETTO evaluates the static selectors (pack-
age, class, method, etc.) and then generates an appropriate string of Smalltalk
code based on the specification of the call descriptor of the link. This string is
then compiled and inserted by BYTESURGEON. For instance, for the cache link
of Section 3] the generated Smalltalk code is:

(<meta: #link> isActiveFor: self)
ifTrue: [<meta: #link> metaobject cacheFor: <meta: #argl> |.

First, the activation condition is checked. Note that the link itself is available
as a meta variable for BYTESURGEON. If the link is active for the currently-
executing object, then delegation occurs: the metaobject is retrieved from the
link, and the cacheFor: message is sent with first argument as parameter.

Unanticipated Partial Behavioral Reflection 61

The exact string generated depends on the call descriptor defining the message
name, parameters, and passing mode. For instance if the passing mode is by
array, it is necessary to first build up the array explicitly in the hook. The
generated code also depends on the scope of the link (e.g., if the link has object
scope, then retrieving the metaobject requires passing the currently-executing
object).

6.3 Hook Composition

If more than one hookset is installed in a given application, some hooks of
different hooksets may conflict with each other, for instance if two hooksets affect
the same message send of a given method. GEPPETTO is capable of detecting
and also solving such a conflict automatically at runtime during the installation
of every new link.

Detecting a hook conflict is a two-fold process: First, GEPPETTO determines
for every link being installed, if another link also manipulates a given method,
i.e., if metalevel behavior is already installed in this method. GEPPETTO holds
a global repository containing all installed links with a list of the affected classes
and methods for each link. Querying this repository results in a collection of
links affecting a given method. Second, GEPPETTO analyzes every instruction of
a method to find out where exactly in the method body more than one link does
install a hook. Concretely, the hook installer iterates over every instruction of
such a method and tests for every conflicting link if it manipulates the current
instruction. The following code illustrates this:

conflictingLinks do: [:eachLink |
(method ir alllnstructionsMatching: eachLink hookset operationSelector) do: [:instr |
"this instruction is manipulated by the given link”
self addLinkToRepository: eachLink forlnstr: instr.

As soon as the hook installer has detected all the instructions conflicting with
already installed links as described above, it solves the conflict by collecting
first all the hooks manipulating a given instruction. Second, all these collected
hooks are installed in sequence before, after or instead of the original instruction,
depending on the control attribute specified in the link. The order in the sequence
is determined by the installation time of the conflicting links, the first installed
link will be installed first.

Note that there is not always a conflict when two links manipulate the same
instruction of a method. If one link e.g., executes metalevel behavior before
the original instruction and the second one afterwards then these links do not
conflict at this instruction. Hence the conflict detection algorithm has to take
into account the controls of the links.

Finally, note that GEPPETTO adopts a simple automatic composition strategy;
future work may include considering more advanced link composition strategies
as supported by Reflex [22].

62 D. Rothlisberger, M. Denker, and E. Tanter

7 Evaluation

We now report on preliminary micro-benchmarks that validate the performance
of GEPPETTO by comparing it with other reflective frameworks and architec-
tures. We measure the slowdown of a fully reified message send over a non-reified
message send. In Table Bl we compare the reflective systems Iguana/J [4], and
MetaclassTalk [23] to GEPPETTO. The measurement for Iguana/J was taken
from []. For MetaclassTalk and GEPPETTO, we performed the benchmarks on a
Windows PC with an Intel Pentium 4 CPU 3.4 GHz and 3 GB RAM. The ver-
sion of MetaclassTalk used was v0.3beta, GEPPETTO was running in Squeak 3.9.
For a more detailed explanation and the source code of the benchmark, see [24].
We are comparing systems to GEPPETTO that do not provide partial reflec-
tion. As mentioned earlier, the real performance gain of partial reflection comes
from the fact that we are able to exactly control what to reify and thus are able
to minimize the reification costs. This benchmark does not cover this use but
lets GEPPETTO reify every information about a message send to be comparable
with the other systems. The benchmark will thus only give an impression of the
worst case, i.e., when GEPPETTO is doing full reification of a message send.

Table 3. Slowdowns of different reflective systems for the reification of message sends

System slowdown factor
Geppetto 10.85
Iguana/J 24

MetaclassTalk 20

Because Iguana/J is using Java, we cannot do a direct time comparison with
GEPPETTO. So we did such a comparison with MetaclassTalk, since both GEP-
PETTO and MetaclassTalk are running in the same environment. We imple-
mented for the operations message sending and instance variable access the same
metaobject protocol and the same behavior at the metalevel in both proposals
to be able to compare the resulting execution time. The measured execution
time includes the reification as well as the processing of the metalevel behavior.
For message sending we reify the receiver, the selector and the arguments, for
instance variable access the name of the variable and its value. Table [presents
the results of this benchmark. For both operations, message send and instance
variable access, we reified almost every possible information in GEPPETTO to
get a reliable comparison with MetaclassTalk which does not support to control
which information shall be reified, as described in Section 3.2l Hence GEPPETTO,
supporting partial reification of information, will perform even better than the
2-t0-3 times speedup against MetaclassTalk in cases where not every information
about an operation occurrence is required.

To explain why GEPPETTO is so much faster than MetaclassTalk we have
to understand that MetaclassTalk wraps every method (using MethodWrap-
pers [T7]) by default to allow message receive to be reified even when called from

Unanticipated Partial Behavioral Reflection 63

a class not under the control of MetaclassTalk. GEPPETTO on the other hand
does not try to provide reified massage reception in this case, as we requested
only a reification of message sending.

Table 4. Speedup of GEPPETTO over MetaclassTalk for reified message send and
instance variable read access

MetaclassTalk (ms) GEPPETTO (ms) Speedup

message send 108 46 2.3x
instance variable read 272 92 2.9x

These preliminary benchmarks tend to validate that the applied model for
partial behavioral reflection is efficient compared to other models. Hence the
combination of PBR and UBR is indeed fruitful and successful, because UPBR
enables us to use unanticipated reflection in an efficient and effective manner.

8 Conclusion and Future Work

In this paper, we have motivated a particular form of computational reflection,
called unanticipated partial behavioral reflection, which is particularly well-suited
for unanticipated adaptation of real-world systems. Our proposal combines the
dynamicity of unanticipated reflection, i.e., reflection that does not require prepa-
ration of the code of any sort, and the selectivity, efficiency and flexibility of par-
tial behavioral reflection. We have presented a system for unanticipated partial
behavioral reflection in Squeak , called GEPPETTO, illustrated its use with a con-
crete example of a Seaside web application. Preliminary benchmarks validate the
applicability of our proposal as an extension to the standard reflective abilities of
Smalltalk.

In the future, we plan to work mainly in two directions: the first is to improve
GEPPETTO itself, the second consists of using it in a number of projects. As far
as improvements to GEPPETTO itself are concerned, we plan to explore advanced
scoping for reifications (control-flow based, and more generally, contextual) to
give the metaprogrammer even more means to control where and when reifica-
tion should occur. Another track is to redesign the backend of GEPPETTO: we
decided to use bytecode transformation as we could leverage the fast and easy
to use BYTESURGEON framework. But bytecode is a very low-level representa-
tion means to trade performance with expressiveness. We plan to extend the
Smalltalk structural meta model to provide a high-level model of sub-method
structure and explore its use for GEPPETTO. We are currently working on a num-
ber of projects that could benefit from GEPPETTO. We have experimented with
back-in-time debugging [25], but the prototype directly uses BYTESURGEON for
now; we plan to explore how GEPPETTO can be used instead. Another interesting
possibility is to use GEPPETTO as the basis for dynamic analysis [26].

Finally, we plan to explore dynamic aspects for Smalltalk with GEPPETTO.
Because as argued in the body of work on versatile kernels for AOP [2127], the

64 D. Rothlisberger, M. Denker, and E. Tanter

flexible model of partial behavioral reflection on which both Reflex and GEP-
PETTO are based is particularly well-suited to serve as an underlying infrastruc-
ture for AOP. This would then allow GEPPETTO to provide more elaborate AOP
features than what the other known dynamic AOP systems for Smalltalk [28][29)
do at present.

Acknowledgments. We acknowledge the financial support of the Swiss Na-
tional Science Foundation for the projects “A Unified Approach to Composi-
tion and Extensibility” (SNF Project No. 200020-105091/1, Oct. 2004 - Sept.
2006) and “Analyzing, capturing and taming software change” (SNF Project
No. 200020-113342, Oct. 2006 - Sept. 2008). E. Tanter is partially financed by
the Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan,
Chile.

References

1. Gamma, E., Helm, R., Vlissides, J., Johnson, R.E.: Design patterns: Abstraction
and reuse of object-oriented design. In Nierstrasz, O., ed.: Proceedings ECOOP ’93.
Volume 707 of LNCS., Kaiserslautern, Germany, Springer-Verlag (1993) 406-431

2. Rao, R.: Implementational reflection in Silica. In America, P., ed.: Proceedings
ECOOP ’91. Volume 512 of LNCS., Geneva, Switzerland, Springer-Verlag (1991)
251-267

3. Kiczales, G., Ashley, J., Rodriguez, L., Vahdat, A., Bobrow, D.G.: Metaobject
protocols: Why we want them and what else they can do. In: Object-Oriented
Programming: the CLOS Perspective. MIT Press (1993) 101-118

4. Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of ap-
plication behaviour. In: Proceedings of European Conference on Object-Oriented
Programming. Volume 2374., Springer-Verlag (2002) 205-230

5. Tarr, P.L., D’'Hondt, M., Bergmans, L., Lopes, C.V.: Workshop on aspects and
dimensions of concern: Requirements on, and challenge problems for, advanced sep-
aration of concerns. In Malenfant, J., Moisan, S., Moreira, A.M.D., eds.: ECOOP
2000 Workshops. Volume 1964 of LNCS., Springer (2000) 203-240

6. Smith, B.C.: Reflection and semantics in a procedural language. Technical Report
TR-272, MIT, Cambridge, MA (1982)

7. Ferber, J.: Computational reflection in class-based object-oriented languages. In:
Proceedings OOPSLA ’89, ACM SIGPLAN Notices. Volume 24. (1989) 317-326

8. Maes, P.: Computational Reflection. PhD thesis, Laboratory for Artificial Intelli-
gence, Vrije Universiteit Brussel, Brussels Belgium (1987)

9. McAffer, J.: Engineering the meta level. In Kiczales, G., ed.: Proceedings of the
1st International Conference on Metalevel Architectures and Reflection (Reflection
96), San Francisco, USA (1996)

10. Tanter, E., Noyé, J., Caromel, D., Cointe, P.: Partial behavioral reflection: Spa-
tial and temporal selection of reification. In: Proceedings of OOPSLA '03, ACM
SIGPLAN Notices. (2003) 27-46

11. Denker, M., Ducasse, S., Tanter, E.: Runtime bytecode transformation for
Smalltalk. Journal of Computer Languages, Systems and Structures 32 (2006)
125-139

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Unanticipated Partial Behavioral Reflection 65

Ducasse, S., Lienhard, A., Renggli, L.: Seaside — a multiple control flow web ap-
plication framework. In: Proceedings of ESUG International Smalltalk Conference
2004. (2004) 231-257

Goldberg, A., Robson, D.: Smalltalk 80: the Language and its Implementation.
Addison Wesley, Reading, Mass. (1983)

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The
story of Squeak, A practical Smalltalk written in itself. In: Proceedings OOPSLA
’97, ACM SIGPLAN Notices, ACM Press (1997) 318-326

Rivard, F.: Smalltalk : a Reflective Language. In: Proceedings of REFLECTION
'96. (1996) 21-38

Ducasse, S.: Evaluating message passing control techniques in Smalltalk. Journal
of Object-Oriented Programming (JOOP) 12 (1999) 39-44

Brant, J., Foote, B., Johnson, R., Roberts, D.: Wrappers to the rescue. In: Pro-
ceedings European Conference on Object Oriented Programming (ECOOP 1998).
Volume 1445 of LNCS., Springer-Verlag (1998) 396-417

Bouragadi, N.: Un MOP Smalltalk pour I’étude de la composition et de la compat-
ibilité des métaclasses. Application & la programmation par aspects (A Smalltalk
MOP for the Study of Metaclass Composition and Compatibility. Application to
Aspect-Oriented Programming - In French). These de doctorat, Université de
Nantes, Nantes, France (1999)

Bouragadi, N.: Safe metaclass composition using mixin-based inheritance. Journal
of Computer Languages, Systems and Structures 30 (2004) 49-61

Bouraqadi, N., Seriai, A., Leblanc, G.: Towards unified aspect-oriented program-
ming. In: Proceedings of ESUG 2005 (13th International Smalltalk Conference).
(2005)

Tanter, E., Noyé, J.: A versatile kernel for multi-language AOP. In: Proceedings of
the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE 2005). Volume 3676 of LNCS., Tallin, Estonia
(2005)

Tanter, E.: Aspects of composition in the reflex aop kernel. In: Proceedings of the
5th International Symposium on Software Composition (SC 2006). LNCS, Vienna,
Austria (2006) 99-114

Bouragadi, N.: Concern oriented programming using reflection. In: Workshop on
Advanced Separation of Concerns — OOPSLA 2000. (2000)

Roéthlisberger, D.: Geppetto: Enhancing Smalltalk’s reflective capabilities with
unanticipated reflection. Master’s thesis, University of Bern (2006)

Lewis, B.: Debugging backwards in time. In: Proceedings of the Fifth International
Workshop on Automated Debugging (AADEBUG 2003). (2003)

Denker, M., Greevy, O., Lanza, M.: Higher abstractions for dynamic analysis.
In: 2nd International Workshop on Program Comprehension through Dynamic
Analysis (PCODA 2006). (2006) 32-38

Tanter, E., Noyé, J.: Motivation and requirements for a versatile AOP kernel. In:
1st European Interactive Workshop on Aspects in Software (EIWAS 2004), Berlin,
Germany (2004)

Bergel, A.: FacetS: First class entities for an open dynamic AOP language. In:
Proceedings of the Open and Dynamic Aspect Languages Workshop. (2006)
Hirschfeld, R.: AspectS — aspect-oriented programming with Squeak. In Aksit,
M., Mezini, M., Unland, R., eds.: Objects, Components, Architectures, Services,
and Applications for a Networked World. Number 2591 in LNCS, Springer (2003)
216-232

Stateful Traits

Alexandre Bergel, Stéphane Ducasse?, Oscar Nierstrasz?, and Roel Wuyts*

1 DSG, Trinity College Dublin, Ireland
2 Language and Software Evolution — LISTIC, Université de Savoie
3 Software Composition Group, University of Bern
% Lab for Software Composition and Decomposition, Université Libre de Bruxelles

Abstract. Traits offer a fine-grained mechanism to compose classes from reus-
able components while avoiding problems of fragility brought by multiple inher-
itance and mixins. Traits as originally proposed are stateless, that is, they contain
only methods, but no instance variables. State can only be accessed within traits
by accessors, which become required methods of the trait. Although this approach
works reasonably well in practice, it means that many traits, viewed as software
components, are artificially incomplete, and classes that use such traits may con-
tain significant amounts of boilerplate glue code. Although these limitations are
largely mitigated by proper tool support, we seek a cleaner solution that sup-
ports stateful traits. The key difficulty is how to handle conflicts that arise when
composed traits contribute instance variables whose names clash. We present a
solution that is faithful to the guiding principle of stateless traits: the client re-
tains control of the composition. Stateful traits consist of a minimal extension
to stateless traits in which instance variables are purely local to the scope of a
trait, unless they are explicitly made accessible by the composing client of a trait.
Naming conflicts are avoided, and variables of disjoint traits can be explicitly
merged by clients. We discuss and compare two implementation strategies, and
briefly present a case study in which stateful traits have been used to refactor the
trait-based version of the Smalltalk collection hierarchy.

1 Introduction

Traits are pure units of reuse consisting only of methods [SDNBO3IDNS T 06]]. Traits can
be composed to either form other traits or classes. They are recognized for their potential
in supporting better composition and reuse, hence their integration in newer versions
of languages such as Perl 6, Squeak [TKM ™97, Scala [scal, Slate [Sld] and Fortress
[for]. Although traits were originally designed for dynamically-typed languages, there
has been considerable interest in applying traits to statically-typed languages as well
[FRO3!SDOS.NDS06].

Traits make it possible for inheritance to be used to reflect conceptual hierarchy
rather than for code reuse. Duplicated code can be factored out as traits, rather than
being jimmied into a class hierarchy in awkward locations. At the same time, traits

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 66 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Stateful Traits 67

largely avoid the fragility problems introduced by approaches based on multiple inher-
itance and mixins, since traits are entirely divorced from the inheritance hierarchy.

In their original form, however, traits are stateless, i.e., traits are purely groups of
methods without any instance variables. Since traits not only provide methods, but may
also require methods, the idiom introduced to deal with state was to access state only
through accessors. The client of a trait is either a class or a composite trait that uses
the trait to build up its implementation. A key principle behind traits is that the client
retains control of the composition. The client, therefore, is responsible for providing
the required methods, and resolving any possible conflicts. Required accessors would
propagate to composite traits, and only the composing client class would be required to
implement the missing accessors and the instance variables that they give access to. In
practice, the accessors and instance variables could easily be generated by a tool, so the
fact that traits were stateless posed only a minor nuisance.

Conceptually, however, the lack of state means that virtually all traits are incomplete,
since just about any useful trait will require some accessors. Furthermore, the mecha-
nism of required methods is abused to cover for the lack of state. As a consequence, the
required interface of a trait is cluttered with noise that impedes the understanding and
consequently the reuse of a trait. Even if the missing state and accessors can be gener-
ated, many clients will consist of “shell classes”” — classes that do nothing but compose
traits with boilerplate glue code. Furthermore, if the required accessors are made public
(as is the case in the Smalltalk implementation), encapsulation is unnecessarily violated
in the client classes. Finally, if a trait is ever modified to include additional state, new
required accessors will be propagated to all client traits and classes, thus introducing a
form of fragility that traits were intended to avoid!

This paper describes stateful traits, an extension of stateless traits in which a single
variable access operator is introduced to give clients of traits control over the visibility
of instance variables. The approach is faithful to the guiding principle of stateless traits
in which the client of a trait has full control over the composition. It is this principle that
is the key to avoiding fragility in the face of change, since no implicit conflict resolution
rules come into play when a trait is modified.

In a nutshell, instance variables are private to a trait. The client can decide, however,
at composition time to access instance variables offered by a used trait, or to merge vari-
ables offered by multiple traits. In this paper we present an analysis of the limitations of
stateless traits and we present our approach to achieving stateful traits. We describe and
compare two implementation strategies, and we briefly describe our experience with an
illustrative case study.

The structure of this paper is as follows: First we review stateless traits [SDNBO3|
IDNST06]. In Section B we discuss the limitations of stateless traits. In Section H we
introduce stateful traits, which support the introduction of state in traits. Section[3 out-
lines some details of the implementation of stateful traits. In Section [0 we present a
small case study in which we compare the results of refactoring the Smalltalk collec-
tions hierarchy with both stateless and stateful traits. In Section [7l we discuss some of
the broader consequences of the design of stateful traits. Section [§] discusses related
work. Section[Q] concludes the paper.

68 A. Bergel et al.

2 Stateless Traits

2.1 Reusable Groups of Methods

Stateless traits are sets of methods that serve as the behavioural building block of classes
and primitive units of code reuse [DNST06]. In addition to offering behaviour, traits
also require methods, i.e., methods that are needed so that trait behaviour is fulfilled.
Traits do not define state, instead they require accessor methods.

In Figure [Il the trait TSyncReadWrite provides the methods syncRead,
syncWrite and hash. It requires the methods read and write, and the two ac-
cessor methods lock and lock:. We use an extension to UML to represent traits
(the right column lists required methods while the left one lists the provided
methods).

2.2 Composing Classes from Mixins

The following equation depicts how a class is built with traits:

class = superclass + state + trait composition + glue code

A class is specified from a superclass, state definition, a set of traits, and some glue
methods. Glue methods are defined in the class and they connect the traits together; i.e.,
they implement required trait methods (often for accessing state), they adapt provided
trait methods, and they resolve method conflicts.

In Figure[Tl the class SyncStream defines the field lock and the glue methods
lock, lock:, isBusy and hash. The other required methods of TSyncReadWrite,
read and write, are also provided since the class SyncStream uses another trait
TStream which provides them.

syncRead
I value | ToP
self lock acquire. = ream
value := self read. TSyncReadWrite read
self lock release. syncRead | read write
Avalue syncWrite | write hash
hash lock:
lock
syncWrite AN

lvale| @{hashFromStream -> hash}
self lock acquire.
value := self write.
self lock release. | @{hashFromSync -> hash
A value

SyncStream

lock

lock

lock:

. [TraitName]

hash isBusy Brovided | requied
A self hashFromSync thash methods | methods
bitAnd: self hashFromStream
< Usestrait

Fig. 1. The class SyncStream is composed of the two traits TSyncReadWrite and TStream

Stateful Traits 69

Trait composition respects the following three rules:

— Methods defined in the class take precedence over trait methods. This allows the
glue methods defined in a class to override methods with the same name provided
by the used traits.

— Flattening property. A non-overridden method in a trait has the same semantics as
if it were implemented directly in the class using the trait.

— Composition order is irrelevant. All the traits have the same precedence, and hence
conflicting trait methods must be explicitly disambiguated.

With this approach, classes retain their primary role as generators of instances,
whereas traits are purely behavioural units of reuse. As with mixins, classes are or-
ganized in a single inheritance hierarchy, thus avoiding the key problems of multiple
inheritance, but the incremental extensions that classes introduce to their superclasses
are specified using one or more traits. In contrast to mixins, several traits can be ap-
plied to a class in a single operation: trait composition is unordered. Instead of the
trait composition resulting implicitly from the order in which traits are composed (as
is the case with mixins), it is fully under the control of the composing class.

2.3 Conflict Resolution

While composing traits, method conflicts may arise. A conflict arises if we combine
two or more traits that provide identically named methods that do not originate from
the same trait. Conflicts are resolved by implementing a method at the level of the class
that overrides the conflicting methods, or by excluding a method from all but one trait.
In addition traits allow method aliasing; this makes it possible for the programmer to
introduce an additional name for a method provided by a trait. The new name is used
to obtain access to a method that would otherwise be unreachable because it has been

overridden [DNST06].

In Figure [Il methods in TSyncReadWrite and in TStream are used by Sync-
Stream. The trait composition associated to SyncStream is:

TSyncReadWrite @ {hashFromSync—hash} + TStream @ {hashFromStream—hash}

This means that SyncStream is composed of (i) the trait TSyncReadWrite for
which the method hash is aliased to hashFromSync and (ii) the trait TStream
for which the method hash is aliased to hashFromStream.

2.4 Method Composition Operators

The semantics of traits composition is based on four operators: sum, overriding, exclu-
sion and aliasing [DNST06].

The sum trait TSyncReadWrite + TStream contains all of the non-conflicting methods
of TSyncReadWrite and TStream. If there is a method conflict, that is, if TSyncRead-
Write and TStream both define a method with the same name, then in TSyncReadWrite
+ TStream that name is bound to a distinguished conflict method. The + operator is
associative and commutative.

70 A. Bergel et al.

The overriding operator constructs a new composition trait by extending an existing
trait composition with some explicit local definitions. For instance, SyncStream over-
rides the method hash obtained from its trait composition. This can also be done with
methods, as we will discuss in more detail later.

A trait can be constructed by excluding methods from an existing trait using the
exclusion operator —. Thus, for instance, TStream — {read, write} has a single method
hash. Exclusion is used to avoid conflicts, or if one needs to reuse a trait that is “too
big” for one’s application.

The method aliasing operator @ creates a new trait by providing an additional name
for an existing method. For example, if TStream is a trait that defines read, write and
hash, then TStream @ {hashFromStream —hash} is a trait that defines read, write, hash
and hashFromStream. The additional method hashFromStream has the same body as
the method hash. Aliases are used to make conflicting methods available under another
name, perhaps to meet the requirements of some other trait, or to avoid overriding. Note
that because the body of the aliased method is not changed in any way, so an alias to a
recursive method is not recursive.

3 Limitations of Stateless Traits

Traits support the reuse of coherent groups of methods by otherwise independent classes
[DNST06]. Traits can be composed out of other traits. As a consequence they serve well
as a medium for structuring code. Unfortunately stateless traits necessarily encode de-
pendency on state in terms of required methods (i.e., accessors). In essence, traits are
necessarily incomplete since virtually any useful trait will be forced to define required
accessors. This means that the composing class must define the missing instance vari-
ables and accessors.

The incompleteness of traits results in a number of annoying limitations, namely:
(i) trait reusability is impacted because the required interface is typically cluttered with
uninteresting required accessors, (ii) client classes are forced to implement boilerplate
glue code, (iii) the introduction of new state in a trait propagates required accessors to
all client classes, and (iv) public accessors break encapsulation of the client class.

Although these annoyances can be largely addressed by proper tool support, they
disturb the appeal of traits as a clean, lightweight mechanism for composing classes
from reusable components. A proper understanding of these limitations is a prerequisite
to entertaining any proposal for a more general approach.

3.1 Limited Reusability

The fact that a stateless trait is forced to encode state in terms of required accessors means
that it cannot be composed “off-the-shelf” without some additional action. Virtually ev-
ery useful trait is incomplete, even though the missing part can be trivially fulfilled.

What’s worse, however, is the fact that the required interface of a trait is cluttered
with dependencies on uninteresting required accessors, rather than focussing attention
on the non-trivial hook methods that clients must implement.

Although this problem can be partially alleviated with proper tool support that distin-
guishes the uninteresting required accessors from the other required methods, the fact

Stateful Traits 71

initialize N
super initialize.)
self lock: Lock new |:| Duplicated code

syncRead i> <k3}— Use of trait
I'value |

self lock acquire.
value := self read.
self lock release. TSyncReadWrite
A value initialize | read

- syncRead| write

m L syncWrite | lock:
I value | lock
self lock acquire.

value := self write.
self lock release.

A value
SyncFile SyncStream SyncSocket
[Tock Tock Tock
lock: lock: lock:
lock lock lock
read read read
write write write

Fig. 2. The lock variable, the lock and lock: methods are duplicated among trait TSyncRead-
Write users

remains that traits with required accessors can never be reused off-the-shelf without
additional action by the ultimate client class.

3.2 Boilerplate Glue Code

The necessary additional client action consists essentially in the generation of boil-
erplate glue code to inject the missing instance variables, accessors and initialization
code. Clearly this boilerplate code must be generated for each and every client class.
In the most straightforward approach, this will lead to the kind of duplicated code that
traits were intended to avoid.

Figure [2lillustrates such a situation where the trait TSyncReadWrite needs to access
a lock. This lock variable, the lock accessor and the lock: mutator have to be duplicated
in SyncFile, SyncStream and SyncSocket.

Once again, to avoid this situation, tool support would be required (i) to automat-
ically generate the required instance variables and accessors, and (ii) to generate the
code in such a way as to avoid actual duplication.

Another unpleasant side effect of the need for boilerplate glue code is the emergence
of “shell classes” consisting of nothing but glue code. In the Smalltalk hierarchy refac-
tored using stateless traits [BSDO3], we note that 24% (7 out of 29) of the classes in the
hierarchy refactored with traits are pure shell classes.

3.3 Propagation of Required Accessors

If a trait implementation evolves and requires new variables, it may impact all the classes
that use it, even if the interface remains untouched. For instance, if the implementation

72 A. Bergel et al.

of the trait TSyncReadWrite evolves and requires a new variable numberWaiting in-
tended to give the number of clients waiting for the lock, then all the classes using this
trait are impacted, even though the public interface does not change.

Required accessors are propagated and accumulated from trait to trait, therefore
when a class is composed of deeply composed traits, a large number of accessors may
need to be resolved. When a new state dependency is introduced in a deeply nested
trait, required accessors can be propagated to a large number of client classes. Again,
proper tool support can largely mitigate the consequences of such changes, but a more
satisfactory solution would be welcome.

3.4 Violation of Encapsulation

Stateless traits violate encapsulation in two ways. First of all, stateless traits unneces-
sarily expose information about their internal representation, thus muddying their in-
terface. A stateless trait exposes every part of its needed representation as a required
accessor, even if this information is of no interest to its clients. Encapsulation would
be better served if traits resembled more closely abstract classes, where only abstract
methods are explicitly declared as being the responsibility of the client subclass. By the
same token, a client class using a trait should only see those required methods that are
truly its responsibility to implement, and no others.

The second violation is about visibility. In Smalltalk, instance variables are always
private. Access can be granted to other objects by providing public accessors. But if
traits require accessors, then classes using these traits must provide public accessors to
the missing state, even if this is not desired.

In principle, this problem could be somewhat mitigated in Java-like languages by
including visibility modifiers for stateless traits in Java-like languages. A trait could
then require a private or protected accessor for missing state. The client class could
then supply these accessors without violating encapsulation (and optionally relaxing the
required modifier). This solution, however, would not solve the problem for Smalltalk-
like languages in which all methods are public, and may only be marked as “private”
by convention (i.e., by placing such methods in a category named “private”).

4 Stateful Traits: Reconciling Traits and State

We now present stateful traits as our solution to the limitations of stateless traits. Al-
though it may seem that adding instance variables to traits would represent a trivial
extension, in fact there are a number of issues that need to be resolved. Briefly, our
solution addresses the following concerns:

— Stateless traits should be a special case of stateful traits. The original semantics of
stateless traits (and the advantages of that solution) should not be impacted.

— Any extension should be syntactically and semantically minimal. We seek a simple
solution.

— We should address the limitations listed in Section [3l In particular, it should be
possible to express complete traits. Only methods that are conceptually the respon-
sibility of client classes should be listed as required methods.

Stateful Traits 73

— The solution should offer sensible default semantics for trait usage, thus enabling
black-box usage.

— Consistent with the guiding principle of stateless traits, the client class should retain
control over the composition, in particular over the policy for resolving conflicts. A
degree of white-box usage is therefore also supported, where needed.

— As with stateless traits, we seek to avoid fragility with respect to change. Changes
to the representation of a trait should normally not affect its clients.

— The solution should be largely language independent. We do not depend on obscure
or exotic language features, so the approach should easily apply to most object-
oriented languages.

The solution we present extends traits to possibly include instance variables. In a
nutshell, there are three aspects to our approach:

1. Instance variables are, by default, private to the scope of the trait that defines them.

2. The client of a trait, i.e., a class or a composite trait, may access selected variables
of that trait, mapping those variables to possibly new names. The new names are
private to the scope of the client.

3. The client of a composite trait may merge variables of the traits it uses by mapping
them to a common name. The new name is private to the scope of the client.

In the following subsections we provide details of the stateful traits model.

4.1 Stateful Trait Definition

A stateful trait extends a stateless trait by including private instance variables. A stateful
trait therefore consists of a group of public methods and private instance variables, and
possibly a specification of some additional required methods to be implemented by
clients.

Methods. Methods defined in a trait are visible to any other trait with which it is com-
posed. Because methods are public, conflicts may occur when traits are composed.
Method conflicts for stateful traits are resolved in the same way as with stateless
traits.

Variables. By default, variables are private to the trait that defines them. Because vari-
ables are private, conflicts between variables cannot occur when traits are composed.
If, for example, traits T1 and T2 each define a variable x, then the composition of
T1 + T2 does not yield a variable conflict. Variables are only visible to the trait that
defines them, unless access is widened by the composing client trait or class with
the @ @ variable access operator.

Figure[3shows how the situation presented in Figure[Ilis reimplemented using state-
ful traits. The class SyncStream is composed of the traits TStream and TSyncRead-
Write. The trait TSyncReadWrite defines the variable lock, three methods syncRead,
syncWrite and hash, and requires methods read and write.

Note that, in order to include state in traits, we must extend the mechanism for defin-
ing traits. In the Smalltalk implementation, this is achieved by extending the message

74 A. Bergel et al.

initialize =
super initialize.
lock := Lock new

syncRead | N TSyncReadWrite TStream

| value | lock

lock acquire. initialize | read read

value := self read. \-synCRead write write

lock release. syncWrite hash

A value

hash

syncWrite

I value |

lock acquire. @{hashFromStream -> hash}

lue := self write.

;ﬁ:zerele:see.wn e @{hashFromSync -> hash}

A value @ @{syncLock -> lock}
isBusy

A syncLock isAcquireﬁ\ Sinesesn
haSh ~ISBusy

A self hashFromSync hash

bitAnd: self hashFromStream

<jUsestrait

Fig. 3. The class SyncStream is composed of the stateful traits TStream and TSyncReadWrite

sent to the Trait class with a new keyword argument to represent the used instance vari-
ables. For instance, we can now define the TSyncReadWrite trait as follows:

Trait named: #TSyncReadWrite
uses: {}
instVarNames: ’lock’

The trait TSyncReadWrite is not composed of any other traits and it defines a vari-
able lock. The uses: clause specifies the trait composition (empty in this case), and
instVarNames: lists the variables defined in the trait (i.e., the variable, lock). The inter-
face for defining a class as composition of traits is the same as with stateless traits. The
only difference is that the trait composition expression supports an additional operator
(@ @) for granting access to variables of the used traits. Here we see how SyncStream
is composed from the traits TSyncReadWrite and TStream:

Object subclass: #SyncStream
uses: TSyncReadWrite @ {#hashFromSync —#hash}
@ @ {syncLock —lock}
+ TStream @ {#hashFromStream —#hash}
instVarNames: ”

In this example, access is granted to the lock variable of the TSyncReadWrite trait
under the new name syncLock. As we shall now see, the @ @ operator provides a fine
degree of control over the visibility of trait variables.

Stateful Traits 75

4.2 Variable Access

By default, a variable is private to the trait that defines it. However, the variable access
operator (@ @) allows variables to be accessed from clients under a possibly new name,
and possibly merged with other variables.

If T is a trait that defines a (private) instance variable x, then T@ @{y —x} represents
a new trait in which the variable x can be accessed from its client scope under the
name y. x and y represent the same variable, but the name x is restricted to the scope
of t whereas the name y is visible to the enclosing client scope (i.e., the composing
classscope). For instance, in the following composition:

TSyncReadWrite @ {hashFromSync —hash} @ @ {syncLock —lock}

the variable lock defined in TSyncReadWrite is accessible to the class SyncStream using
that trait under the name syncLock. (Note that renaming is often needed to distinguish
similarly named variables coming from different used traits.)

In a trait variable composition, three situations can arise: (i) variables remain private
(i.e., the variable access operator is not used), (ii) access to a private variable is granted,
and (iii) variables are merged.

Keeping variables private. By default, instance variables are private to their trait. If
the scope of variables is not broadened at composition time using the variable access
operator, conflicts do not occur and the traits do not share state. Figure [shows a case
where T1 and T2 are composed without variable access being broadened. Each of these
two traits defines a variable x. In addition they each define accessor methods. C also
defines a variable x and two methods getX and setX:. T1, T2 and C each have their own
variable x as shown in Figure 4]

The trait composition of C is: T1 + T2. Note that if methods would conflict we would
use the default trait strategy to resolve them by locally redefining them in C and that
method aliasing could be used to access the overridden methods.

This form of composition is close to the module composition approach proposed in
Jigsaw and supports a black-box reuse scenario.

Granting variable access. Figure 3] shows how the client class C gains access to the
private x variables of traits T1 and T2 by using the variable access operator @ @. Be-
cause two variables cannot have the same name within a given scope, these variables
have to be renamed. The variable x from T1 is accessible as xFromT1 and x from T2 is
accessible as xFromT2. C also defines a method sum that returns the value xFromT1 +
xFromT2. The trait composition of C is:

T1 @@ {xFromT1 —x}
+T2 @@ {xFromT2 —x}

C can therefore build functionality on top of the traits that it uses, without exposing
any details to the outside. Note that methods in the trait continue to use the ‘internal’
name of the variable as defined in the trait. The name given in the variable access
operator @ @ is only to be used in the client classes. This is similar to the method
aliasing operator @.

76 A. Bergel et al.

T ¢ :=C new.
X c setXT1: 1.
C getXT1 | c setXT2: 2.
m setXTH: c setX: 3.
tX .
o \» T2 { Now:
X c getXT1 =1
getXT2 cgetXT2=2
setXT2: cgetX=3}

Fig. 4. Keeping variables private: while composed, variables are kept separate. Traits T1, T2 and
C have their own variable X.

LL ¢ :=C new.
@@{ xFromT1 > x = :
{ >xJ [g c setXT1: 1.
c / g:tXTt | c setXT2: 2.
sum { Now:
X 12 c getXT1 =1
@@{ xFromT2 ->x } cgetXT2=2
getXT2 | csum=3}

setXT2:
sum
A xFromT1 + xFromT2

Fig. 5. Granting access to variables: x of T1 and T2 are given access in C

T
@@{w > x} X ¢ :=C new.
c getxX c setW: 3.
setX: |
getw { Now:
SetW: \ T2 cgetX=3
y cgetY=3
@@{w ->y} gety cgetW=3}
setY: |

Fig. 6. Merging variables: variables X and y are merged in C under the name w

Merging variables. Variables from several traits can be merged when they are com-
posed by using the variable access operator to map multiple variables to a common
name within the client scope. This is illustrated in Figure

Both T1 and T2 give access to their instance variables x and y under the name w.
This means that w is shared between all three traits. This is the reason why sending
getX, getY, or getW to an instance of a class implementing C returns the same result, 3.
The trait composition of C is:

T1Te@ {w—-x}+T2@@ {w—y}

Note that merging is fully under the control of the client class or trait. There can be
no accidental name capture since visibility of instance variables is never propagated to
an enclosing scope. Variable name conflicts cannot arise, since variables are private to

Stateful Traits 77

traits unless they are explicitly accessed by clients, and variables are merged when they
are mapped to common names.

The reader might well ask, what happens if the client also defines an instance variable
whose name happens to match the name under which a used trait’s variable is accessed?
Suppose, for example, that C in Figure [6] attempts to additionally define an instance
variable called w. We consider this to be an error. This situation cannot possibly arise
as a side effect of changing the definition of a used trait since the client has full control
over the names of instance variables accessible within its scope. As a consequence this
cannot be a case of accidental name capture, and can only be interpreted as an error.

4.3 Requirements Revisited

Let us briefly reconsider our requirements. First, stateful traits do not change the se-
mantics of stateless traits. Stateless traits are purely a special case of stateful traits.
Syntactically and semantically, stateful traits represent only a minor extension of state-
less traits.

Stateful traits address the issues raised in Section3] In particular, (i) there is no longer
a need to clutter trait interfaces with required accessors, (ii) clients no longer need to
provide boilerplate instance variables and accessors, (iii) the introduction of state in
traits remains private to that trait, and (iv) no public accessors need be introduced in
client classes. As a consequence, it is possible to define “complete” traits that require
no methods, even though they make use of state.

The default semantics of stateful traits enables black-box usage since no representa-
tion is exposed, and instance variables by default cannot clash with those of the client or
of other used traits. Nevertheless, the client retains control of the composition, and can
gain access to the instance variables of used traits. In particular, the client may merge
variables of traits, if this is desired.

Since the client retains full control of the composition, changes to the definition of a
trait cannot propagate beyond its direct clients. There can be no implicit side effects.

Finally, the approach is largely language-independent. In particular, there are no as-
sumptions that the host language provide either access modifiers for instance variables
or exotic scoping mechanisms.

5 Implementation

We have implemented a prototype of stateful traits as an extension of our Smalltalk-
based implementation of stateless traits

As with stateless traits, method composition and reuse for stateful traits do not incur
any overhead since method pointers are shared between method dictionaries of different
traits and classes. This takes advantage of the fact that methods are looked up by name
in the dictionary rather than accessed by index and offset, as is done to access state in
most object-oriented programming languages. However, by adding state to traits, we
have to find a solution to the fact that the access to instance variables cannot be linear
(i.e., based on offsets) since the same trait methods can be applied to different ob-
jects [BGGT02]|. A linear structure for state representation cannot be always obtained

' Seefwww . iam.unibe. ch/~scg/Research/Traits

http://www.iam.unibe.ch/~scg/Research/Traits

78 A. Bergel et al.

from a composition graph. This is a common problem of languages that support mul-
tiple inheritance. We evaluated two implementations: copy-down and changing object
internal representation. The following section illustrates the problem.

5.1 The Classical Problem of State Linearization

As pointed out by Bracha Chapter 7], in implementations of single inheritance
languages such as Modula-3 [CDG 92, and more recently in the Jikes Research Vir-
tual Machine [Jikl], the notion of virtual functions is supported by associating to each
class a table whose entries are the addresses of the methods defined for instances of
that class. Each instance of a class contains a reference to the class method table. It
is through this reference that the appropriate method to be invoked on an instance is
located. Under multiple inheritance, this technique must be modified, since the super-
classes of a class no longer share a common prefix.

Since a stateful trait may have a private state, and may be used in multiple contexts,
it is not possible to have a static and linear instance variable offset list shared by all the
methods of the trait and its users.

— T T3
geAtX — | X, Y, Z R
X LgetX] I
AN T2 T4
get)\/ V, X <
v \-getv| I
Model
Memory layout Variable
T T2 T3 T4 Offsets
T1.x | T2.v| T1.x Tix| O
Ty [T2.x] T1y Tiy]| 1
T1.z T1.z T1.z| 2
T2.v| 3
T2x| 4

Fig.7. Problem of combining multiple traits: variable’s offset is not preserved

The top half of Figure [7] shows a trait T3 using T1 and a trait T4 using T1 and T2.
T1 defines 3 variables x, y, z and T2 defines 2 variables v, x. The bottom part shows a
possible corresponding representation in memory that uses offsets. Assuming that we
start the indexing at zero, T2.v has zero for index, and T2.x has one. However, in T4
the same two variables might have indexes three and fourd So static indexes used in
methods from T1 or T2 are no longer valid. Note that this problem occurs regardless of
the composition of trait T4 out of traits T1 and T2 (whether it needs access to variables,
whether or not it merges variable x, ...). The problem is due to the linear representation
of variables in the underlying object model.

% We assume that the slots of T2 are added after the ones of T1. In the opposite case the argument
holds for the variables of T1.

Stateful Traits 79

5.2 Three Approaches to State Linearization

Three different approaches are available to represent non linear state. C++ uses intra-
object pointers [SG99]. Strongtalk uses a copy-down technique that dupli-
cates methods that need to access variable with different offset. A third approach, as
done in Python [Pyt] for example, is to keep variables in a dictionary and look them up,
similar to what is done for methods.

We implemented the last two approaches for Smalltalk so that we could compare
them for our prototype implementation. We did not implement C++’s solution because
it would require significant effort to change the object representation to be compatible.

5.3 Virtual Base Pointers in C++

In C++ [SE9Q], an instance of a class C' is represented by concatenating the repre-
sentations of superclasses of C'. Such instance is therefore composed of subobjects,
where each subobject corresponds to a particular superclass. Each subobject has its
own pointer to a suitable method table. In this case, the representation of a class is not
a prefix of the representations of all of its subclasses.

Each subobject begins at a different offset from the beginning of the complete C'
object. These offsets, called virtual base pointers [SG99], can be computed statically.
This technique was pioneered by Krogdahl [Kro85,Bra92]].

For instance, let’s consider the situation in C++ illustrated in Figure [§l The upper
part of the figure shows a classical diamond diagram using virtual inheritance (i.e., B
and C inherit virtually A, therefore the w variable is shared between B and C). The

A
w: int
getW(): int
B C
X: int y:int
getX(): int getY(): int
D
z:int
getZ(): int
Model using virtual inheritance
Memory layout D VTables
— P —
I w
AL | --4---%|getW()
B
B
: --1---%|getX()
c y
| --4---%|getY()
z
D ——}---»{getz()

Fig. 8. Multiple virtual inheritance in C++

80 A. Bergel et al.

lower part shows the memory layout of an instance of D. This instance is composed
of 4 “sub-parts” corresponding to the superclasses A, B, C and D. Note that C’s part,
instead of assuming that the state it inherits from A lies immediately “above” its own
state, accesses the inherited state via the virtual base pointer. In this way the B and C
parts of the D instance can share the same common state from A.

We did not attempt to implement this strategy in our Smalltalk prototype, as it would
have required a deep modification to the Smalltalk VM. Since Smalltalk supports only
single inheritance, object layout is fundamentally simpler. Accommodating virtual base
pointers in the layout of an object would also entail changes to the method lookup
algorithm.

5.4 Object State as a Dictionary

An alternative implementation approach is to introduce instance variable accesses based
on names and not on offsets. The variable layout has the semantics of a hash table, rather
than that of an array. For a given variable, its offset is not constant anymore as shown
by Figure [0l The state of an object is implemented by a hash table in which multiple
keys may map to the same value. For instance, variable y of T1 and variable v of T2 are
merged in T4. Therefore, an instance of T4 has two variables (keys), T1.y and T2.v, that
actually point to the same value.

T1
B XYz
getX getX]
Ax @@{v>y}
T2 < T4
Vv, X
getV [getV] I
Av @@{v->v}
Model
Memory layout
T4 yiay
T1.x > vall
T1.y, T2.v > val2
T1.z > val3
T2.x > vald

Fig. 9. Structure of objects is similar to a hash table with multiple keys for a same entry

In Python the state of an object is represented by a dictionary. An expression
such as self.name = value is translated into self. dict [name]=value, where dict isa
primitive to access the dictionary of an object. A variable is declared and defined simply
by being used in Python. For instance, affecting a value to an non-existing variable has
the effect to create a new variable. Representing the state of an object with a dictionary
is a way to deal with the linearization problem of multiple inheritance.

5.5 Copy Down Methods

Strongtalk [BGG™T02] is a high performance Smalltalk with a mixin-aware virtual ma-
chine. A mixin contains description of its instance variables and class variables, and

Stateful Traits 81

a method dictionary where all the code is initially stored. One of the problems when
sharing code among mixin application is that the physical layout of instances varies
between mixin applications. This problem is addressed by the copy down mechanism:
(i) Methods that do not access instance variables or super are shared in the mixin. (ii)
Methods that access instance variables may have to be copied if the variable layout
differs from that of other users of the mixin.

The copy down mechanism favors execution speed over memory consumption. There
is no extra overhead to access variables. Variables are linearly ordered, and methods
that access them are duplicated and adjusted with proper offset access. Moreover, in
Strongtalk, only accessors are allowed to touch instance variables directly at the byte
code level. The space overhead of copy-down is therefore minimal. Effective inlining
by the VM takes care of the rest, except for accessors which impose no space overhead.

The dictionary-based approach has the advantage that it more directly reflects the
semantics of stateful traits, and is therefore attractive for a prototype implementation.
Practical performance could however become problematic, even with optimized dic-
tionary implementations like in Python [Pyt]. The copy-down approach, however, is
clearly the better approach for a fast implementation. Therefore we decided to adopt it
in our implementation of stateful traits in Squeak Smalltalk.

5.6 Benchmarks

As mentioned in the previous section, we adopted the copy-down technique for our
stateful traits implementation. In this section we compare the performance of our state-
ful traits prototype implementation with that of both regular Squeak without traits and
that of the stateless traits implementation. We measured the performance of the follow-
ing two case studies:

— the SyncStream example introduced in the beginning of the paper. The experiment
consisted of writing and reading large objects in a stream 1000 times. This example
was chosen to evaluate whether state is accessed efficiently.

— a link checker application that parses HTML pages to check whether URLs on a
webpage are reachable or not. This entails parsing large HTML files into a tree
representation and running visitors over these trees. This case study was chosen in
order to have a more balanced example that consists of accessing methods as well
as state.

For both case studies we compared the stateful implementation with the stateless
traits implementation and with reular Squeak. The results are shown in Table[T]

Table 1. Execution times of two cases for three implementations: without traits, with stateless
traits and with stateful traits (times in milliseconds)

Without Stateless Stateful traits
traits traits
SyncStream 13912 13913 13912

LinkChecker 2564 2563 2564

82 A. Bergel et al.

As can be seen from the table, no overhead is introduced by accessing instance vari-
ables defined in traits and used in clients. This was to be expected: the access is still
offset-based and almost no differences can be noticed. Regarding overall execution
speed, we see that there is essentially no difference between the three implementations.
This result is consistent with previous experience using traits, and was to be expected
since we did not change the parts of the implementation dealing with methods.

6 Refactoring the Smalltalk Collection Hierarchy

We have carried out a case study in which we used stateful traits to refactor the Smalltalk
collection hierarchy. We have previously used stateless traits to refactor the same hier-
archy [BSDO3]|, and we now compare the results of the two refactorings. The stateless
trait-based Smalltalk collection hierarchy consists of 29 classes which are built from a
total of 52 traits. Among these 29 classes there are numerous classes, which we call
shell classes, that only declare variables and define their associated accessors. Seven
classes of the 29 classes (24%) are shell classes (SkipList, PluggableSet, LinkedList,
OrderedCollection, Heap, Text and Dictionary).

The refactoring with stateful traits results in a redistribution of the variables defined
(in classes) to the traits that effectively need and use them. Another consequence is
the decrease of number of required methods and a better encapsulation of the traits
behaviour and internal representation.

Heap
array
tally
sortBlock
array
array:
tally
tally:
privateSortBlock:
sortBlock

THeaplmpl
add: array
copy array:
grow tally

removeAt:| tally:
TExtensibleSeq [<< | privateSortBlock: | TP TExtensiblelnst

sortBlock

size TArrayBased TSortBlockBased
" self tally -size array sortBlock: aBlock LsortBlock: | privateSortBlock:
Lcapacity | array: sortBlock
capacity j/ tally self privateSortBlock: aBlock
A self array size tally:

Fig. 10. Fragment of the stateless trait Smalltalk collection hierarchy. The class Heap defines
variables used by TArrayBased and TSortBlockBased.

Stateful Traits 83

Heap

THeapImpl

add:
copy

grow — _
TExtensibleSeq <% | removeAt: TExtensiblelnst

TArrayBased

- array
size tally sortBlock: aBlock
Atally [Size
- +capacity| sortBlock := aBlock.
capacity]
A array size

Fig. 11. Refactoring of the class Heap with stateful traits but keeping the trait THeapImpl

TSortBlockBased
sortBlock
I-sortBlock:

Heap
add:
copy
grow
TExtensibleSeq < | removeAt: ey TExtensiblelnst

TArrayBased

array
size tally sortBlock: aBlock
A tally Size
j. +capacity sortBlock := aBlock.
capacity
A array size

Fig. 12. Refactoring of the class Heap with stateful traits removing the trait THeaplmpl

TSortBlockBased
sortBlock
I-sortBlock:

Figure[I0]shows a typical case arising with stateless traits where the class Heap must
define 3 variables (array, tally, and sortBlock). The behaviour of this class is limited
to the initialization of objects and providing accessors for each of these variables. It
uses the trait THeaplmpl, which requires all these accessors. These requirements are
necessary for THeaplmpl since it is composed of TArrayBased and TSortBlockBased
which require such state. These two traits need access to the state defined in Heap.

Figure[IT]shows how Heap is refactored to use stateful traits. All variables have been
moved to the places where they were needed, leading to the result that Heap becomes
empty. The variables previously defined in Heap are rather defined in the traits that
effectively require them. TArrayBased defines two variables array and tally, therefore it
does not need to specify any accessors as required methods. It is the same situation with
TSortBlockBased and the variable sortBlock.

If we are sure that THeaplmpl is not used by any other class or trait, then we
can further simplify this new composition by moving the implementation of the trait

84 A. Bergel et al.

THeaplmpl to Heap and eliminating THeaplmpl. Figure [I2] shows the resulting hierar-
chy. The class Heap defines methods like add: and copy.
Refactoring the Smalltalk class hierarchy using stateful traits yields multiple benefits:

— Encapsulation is preserved: Internal representation is not unnecessarily revealed to
client classes.

— Fewer method definitions: Unnecessary variable accessors are avoided. Accessors
that were defined in Heap are removed.

— Fewer method requirements: Since variables are defined in the traits that used them,
we avoid specifying required accessors. Variable accessors for THeaplmpl, TArray-
Based, and TSortBlockBased are not required anymore. There is no propagation of
required methods due to state usage.

7 Discussion

7.1 Flattening Property

In the original stateless trait model [DNS¥06], trait composition respects the flattening
property, which states that a non-overridden method in a trait has the same semantics
as if it were implemented directly in the class. This implies that traits can be inlined to
give an equivalent class definition that does not use traits. It is natural to ask whether
such an important property is preserved with stateful traits. In short, the answer is yes,
though trait variables may have to be alpha-renamed to avoid name clashes.

In order to preserve the flattening property with stateful traits, we must ensure that
instance variables introduced by traits remain private to the scope of that trait’s methods,
even when their scope is broadened to that of the composing class. This can be done in a
variety of ways, depending on the scoping mechanisms provided by the host language.
Semantically, however, the simplest approach is to alpha-rename the private instance
variables of the trait to names that are unique in the client’s scope. Technically, this
could be achieved by the common technique of name-mangling, i.e., by prepending the
trait’s name to the variable’s name when inserting it in the client’s scope. Renaming and
merging are also consistent with flattening, since variables can simply be renamed or
merged in the client’s scope.

7.2 Limiting Change Impact

Any approach to composing software is bound to be fragile with respect to certain kinds
of change: if a feature that is used by several clients changes, the change will affect the
clients. Extending a trait so that it provides additional methods may well affect clients
by introducing new conflicts. However, the design of trait composition based on explicit
resolution ensures that such changes cannot lead to implicit and unexpected changes
in the behaviour of direct or indirect clients. A direct client can generally resolve a
conflict without changing or introducing any other traits, so no ripple effect will occur
[IDNS06].

In stateful traits adding a variable to a trait does not affect clients because variables
are private. Removing or renaming a variable may require its direct clients to be adapted

Stateful Traits 85

only if this variable is explicitly accessed by these clients. However, once the direct
clients have been adapted, no ripple effect can occur in indirect clients. By avoiding
required method propagation, stateful traits limit the effect of changes.

7.3 About Variable Access

By default a trait variable is private, thereby enforcing black-box reuse. At the same
time we offer an operator enabling the direct client to access the private variables of
the trait. This may appear to be a violation of encapsulation [Sny86]. However this
approach is consistent with our vision that traits serve as building blocks for composing
classes, whether in a black-box or a white-box fashion. Furthermore it is consistent with
the principle that the client of a trait is in control of the composition. It is precisely this
fact that ensures that the effects of changes do not propagate to remote corners of the
class hierarchy.

8 Related Work

We briefly review some of the numerous research activities that are relevant to stateful
traits.

Self. The prototype based language Self does not have a notion of class. Con-
ceptually, each object defines its own format, methods, and delegation relations. Objects
are derived from other objects by cloning and modification. Objects can have one or
more parent objects; messages that are not found in the object are looked for and dele-
gated to a parent object. Self is based around the notion of slots, which unifies methods
and instance variables.

Self uses trait objects to factor out common features [UCCH91]. Nothing prevents
a trait object from also containing state. Similar to the notion of traits presented here,
these trait objects are essentially groups of methods. But unlike our traits, Self’s trait
objects do not support specific composition operators; instead, they are used as ordinary
parent objects.

Interfaces with default implementation. Mohnen proposed an extension of
Java in which interfaces can be equipped with a set of default implementations of meth-
ods. As such, classes that implement such an interface can explicitly state that they
want to use the default implementation offered by that interface (if any). If more than
one interface mentions the same method, a method body must be provided. Conflicts are
flagged automatically, but require the developer to resolve them manually. State cannot
be associated with the interfaces. Scala [5ca] also supports traits i.e., partially defined
interfaces. While the composition of traits in Scala does not follow exactly the one in
stateless traits, traits in Scala cannot define state.

Mixins. Mixins use the ordinary single inheritance operator to extend various
parent classes with a bundled set of features. Although this inheritance operator is well-
suited for deriving new classes from existing ones, it is not necessarily appropriate for
composing reusable building blocks. Specifically, because mixin composition is imple-
mented using single inheritance, mixins are composed linearly. This gives rise to several

86 A. Bergel et al.

problems. First, a suitable total ordering of features may be difficult to find, or may not
even exist. Second,“glue code” that exploits or adapts the linear composition may be
dispersed throughout the class hierarchy. Third, the resulting class hierarchies are often
fragile with respect to change, so that conceptually simple changes may impact many

parts of the hierarchy [DNS™06].

Eiffel. Eiffel is a pure object-oriented language that supports multiple inher-
itance. Features, i.e., method or instance variables, may be multiply inherited along
different paths. Eiffel provides the programmer mechanisms that offer a fine degree of
control over whether such features are shared or replicated. In particular, features may
be renamed by the inheriting class. It is also possible to select a particular feature in case
of naming conflicts. Selecting a feature means that from the context of the composing
subclass, the selected feature takes precedence over the possibly conflicting ones.

Despite the similarities between the inheritance scheme in Eiffel and the composition
scheme of stateful traits, there are some significant differences:

— Renaming vs. aliasing — In Eiffel, when a subclass is created, inherited features can
be renamed. Renaming a feature has the same effect as (i) giving a new name to
this feature and (ii) changing all the references to this feature. This implies a kind
of mapping to be performed when a renamed method is accessed through the static
type of the superclass.

For instance, let’s assume a class Component defines a method update. A sub-
class GraphicalComponent renames update into repaint, and redefines this repaint
with a new implementation. The following code illustrates this situation:

class Component class GraphicalComponent
feature inherit
update is Component
do rename
print ('1’) update as repaint
end redefine
end repaint
end
repaint is
do
print ('2’)
end
end

In essence, the method repaint acts as an override of update. It means that if up-
date is sent to an instance of GraphicalComponent, then repaint is called. This is
illustrated in the following example:
f (c: Component) is

do

c.update

end
f (create{GraphicalComponent})
=>2

This is the way Eiffel preserves polymorphism while supporting renaming.

Stateful Traits 87

In stateful traits, aliasing a method or granting access to a variable assigns a new
name to it. The method or the variable can therefore still be invoked or accessed
through its original name.

— Merging variables — In contrast to to stateful traits, variables can be merged in
Eiffel only if they provide from a common superclass. In stateful traits, variables
provided by two traits can be merged regardless of how these traits are formed.

Jigsaw. Jigsaw has a module system in which a module is a self-referential
scope that binds names to values (i.e., constant and functions). A module acts as a class
(object generator) and as a coarse-grained structural software unit. Modules can be
nested, therefore a module can define a set of classes. A set of operators is provided to
compose modules. These operators are instantiation, merge, override, rename, restrict,
and freeze.

Although there are some differences between the definition of a Jigsaw module and
stateful traits, for instance with the rename operator, the more significant differences
are in motivation and setting. Jigsaw is a framework for defining modular languages.
Jigsaw supports full renaming, and assigns a semantic interpretation to nesting. In Jig-
saw, a renaming is equivalent to a textual replacement of all occurrences of the attribute.
The rename operator distributes over override. It means that Jigsaw has the following

property:
(ml rename a to b) override (m2 rename a to b) = (ml override m2) rename a to b

Traits are intended to supplement existing languages by promoting reuse in the small,
do not declare types, infer their requirements, and do not allow renaming. Stateless traits
do not assign any meaning to nesting. Stateful traits are sensitive to nesting only to the
extent that instance variables are private to a given scope. The Jigsaw operation set also
aims for completeness, whereas in the design of traits we sacrifice completeness for
simplicity.

A notable difference between Jigsaw and stateful traits is with the merging of vari-
ables. In Jigsaw, a module can have state, however variables cannot be shared between
modules. With stateful traits the same variable can be accessed by the traits that use it.
A Jigsaw module acts as a black-box. A module encapsulates its bindings and cannot
be opened. While we value black-box composition, stateful traits do not take such a
restrictive approach, but rather let the client assume responsibility for the composition,
while being protected from the impact of changes.

It is worth mentioning typing issues raised when implementing Jigsaw. Bracha
Chapter 7] pointed out that the difficulty in implementing inheritance in Jig-
saw (which is operator-based) stems from the interaction between structural subtyping
and the algebraic properties of the inheritance operators (e.g., merge and override).

For example, let’s consider the following classes A, B, C, D, E and F' where C'
is a subclass of A and B. FE is a subclass of D and C. F is a subclass of D, A and
B. We have C = AB, E = DC and F' = DAB where in Co,, = C105...C,, the
superclasses of C,.., are denoted C;. (See Figure [[3]) Expanding the definitions of
all names (as dictated by structural typing), one finds that by associativity £ = F.
This equivalence dictates that all three classes have the same type, so that they can be
used interchangeably. This in turn requires that all three have the same representation.

88 A. Bergel et al.

Fig.13. E and F are structurally equivalent but may have different representations

However, using the techniques of C++ (Section[5.3)), these three classes have different
representations. This problem is avoided in traits where a trait does not define a type.

Cecil. Cecil is a purely object-oriented language that combines a classless ob-
ject model, a kind of dynamic inheritance and an optional static type checking. Cecil’s
static type system distinguishes between subtyping and code inheritance even if the
more common case is when the subtyping hierarchy parallels the inheritance hierarchy.
Cecil supports multiple inheritance. Inheriting from the same ancestor more than once,
whether directly or indirectly, has no effect other than to place the ancestor in relation to
other ancestors: Cecil has no repeated inheritance. Inheritance in Cecil requires a child
to accept all of the fields and methods defined in the parents. These fields and methods
may be overridden in the child, but facilities such as excluding fields or methods from
the parents or renaming them as part of the inheritance are not present in Cecil. This is
an important difference with respect to stateful traits.

9 Conclusion

Stateless traits offer a simple compositional approach for structuring object-oriented
programs. A trait is essentially a group of pure methods that serves as a building block
for classes and as a primitive unit of code reuse. However this simple model suffers from
several limitations, in particular (i) trait reusability is impacted because the required
interface is typically cluttered with uninteresting required accessors, (ii) client classes
are forced to implement boilerplate glue code, (iii) the introduction of new state in a
trait propagates required accessors to all client classes, and (iv) public accessors break
encapsulation of the client class.

We have proposed a way to make traits stateful as follows: First, traits can have
private variables. Second, classes or traits composed from traits may use the variable
access operator to (i) access variables of the used traits, (ii) attribute local names to
those variables, and (iii) merge variables of multiple used traits, when this is desired.
The flattening property can be preserved by alpha-renaming variable names that clash.

Stateful traits offer numerous benefits: There is no unnecessary propagation of re-
quired methods, traits can encapsulate their internal representation, and the client can
identify the essential required methods more clearly. Duplicated boilerplate glue code

Stateful Traits 89

is no longer needed. A trait encapsulates its own state, therefore an evolving trait does
not break its clients if its public interface remains unmodified.

Stateful traits represent a relatively modest extension to single-inheritance languages
that enables the expression of classes as compositions of fine-grained, reusable software
components. An open question for further study is whether trait composition can sub-
sume class-based inheritance, leading to a programming language based on composition
rather than inheritance as the primary mechanism for structuring code following Jigsaw
design.

Acknowledgment

We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “A Unified Approach to Composition and Extensibility” (SNF
Project No. 200020-105091/1), and of the Science Foundation Ireland and Lero — the
Irish Software Engineering Research Centre.

We also thank Nathanel Schirli, Gilad Bracha, Bernd Schoeller , Dave Thomas and
Orla Greevy for their valuable discussions and comments. Thanks to Ian Joyner for his
help with the MacOSX Eiffel implementation.

References

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings OOP-
SLA/JECOOP 90, ACM SIGPLAN Notices, volume 25, pages 303-311, October
1990.

[BGGT02] Lars Bak, Gilad Bracha Steffen Grarup, Robert Griesemer, David Griswold, and
Urs Holzle. Mixins in Strongtalk. In ECOOP ’02 Workshop on Inheritance, June
2002.

[Bra92] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multi-
ple Inheritance. PhD thesis, Dept. of Computer Science, University of Utah, March
1992.

[BSDO3] Andrew P. Black, Nathanael Schirli, and Stéphane Ducasse. Applying traits to the
Smalltalk collection hierarchy. In Proceedings OOPSLA’03 (International Con-
ference on Object-Oriented Programming Systems, Languages and Applications),
volume 38, pages 47-64, October 2003.

[CDGT92] Luca Cardelli, Jim Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and
Greg Nelson. Modula-3 language definition. ACM SIGPLAN Notices, 27(8):15-42,
August 1992.

[Cha92] Craig Chambers. Object-oriented multi-methods in cecil. In O. Lehrmann Madsen,
editor, Proceedings ECOOP 92, volume 615 of LNCS, pages 33-56, Utrecht, the
Netherlands, June 1992. Springer-Verlag.

[DNST06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schirli, Roel Wuyts, and Andrew
Black. Traits: A mechanism for fine-grained reuse. ACM Transactions on Pro-
gramming Languages and Systems, 28(2):331-388, March 2006.

[for] The fortress language specification.
http://research.sun.com/projects/plrg/fortress0866.pdf.
[FRO3] Kathleen Fisher and John Reppy. Statically typed traits. Technical Report TR-2003-

13, University of Chicago, Department of Computer Science, December 2003.

90 A. Bergel et al.

[IKM*97]

[Jik]
[Kro85]

[Mey92]
[Moh02]
[NDSO06]
(Pyt]
[sca]

[SDO5]

[SDNB03]

[SE90]

[SG99]

[Sla]
[Sny86]

[UCCHO1]

[US87]

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to
the future: The story of Squeak, A practical Smalltalk written in itself. In Proceed-
ings OOPSLA 97, ACM SIGPLAN Notices, pages 318-326. ACM Press, November
1997.

The jikes research virtual machine. http://jikesrvm.sourceforge.net/.

S. Krogdahl. Multiple inheritance in simula-like languages. In BIT 25, pages
318-326, 1985.

Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1992.

Markus Mohnen. Interfaces with default implementations in Java. In Conference
on the Principles and Practice of Programming in Java, pages 35-40. ACM Press,
Dublin, Ireland, jun 2002.

Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schirli. Flattening Traits. Jour-
nal of Object Technology, 5(4):129-148, May 2006.

Python. http://www.python.org.

Scala home page. http://lamp.epfl.ch/scala/.

Charles Smith and Sophia Drossopoulou. Chai: Typed traits in Java. In Proceedings
ECOOP 2005, 2005.

Nathanael Schirli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black. Traits:
Composable units of behavior. In Proceedings ECOOP 2003 (European Confer-
ence on Object-Oriented Programming), volume 2743 of LNCS, pages 248-274.
Springer Verlag, July 2003.

Bjarne Stroustrup and Magaret A. Ellis. The Annotated C++ Reference Manual.
Addison Wesley, 1990.

Peter F. Sweeney and Joseph (Yossi) Gil. Space and time-efficient memory layout
for multiple inheritance. In Proceedings OOPSLA ’99, pages 256-275. ACM Press,
1999.

Slate. http://slate.tunes.org.

Alan Snyder. Encapsulation and inheritance in object-oriented programming lan-
guages. In Proceedings OOPSLA 86, ACM SIGPLAN Notices, volume 21, pages
38—45, November 1986.

David Ungar, Craig Chambers, Bay-Wei Chang, and Urs Holzle. Organizing pro-
grams without classes. LISP and SYMBOLIC COMPUTATION: An international
Jjournal, 4(3), 1991.

David Ungar and Randall B. Smith. Self: The power of simplicity. In Proceed-
ings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 227-242, December
1987.

SCL:
A Simple, Uniform and Operational Language
for Component-Oriented Programming
in Smalltalk

Luc Fabresse, Christophe Dony, and Marianne Huchard

Lirmm, UMR 5506 CNRS et Université Montpellier 11
161, rue Ada
34392 Montpellier Cedex 5
{fabresse,dony,huchard}@lirmm.fr
http://www.lirmm.fr

Abstract. Unanticipated connection of independently developed com-
ponents is one of the key issues in component-oriented programming.
While a variety of component-oriented languages have been proposed,
none of them has achieved a breakthrough yet.

In this paper, we present SCL a simple language dedicated to
component-oriented programming. SCL integrates well-known features
such as component class, component, interface, port or service. All these
well-known features are presented, discussed and compared to existing
approaches because they vary quite widely from one language to another.
But, these features are not enough to build a component language. In-
deed, most approaches use language primitives and shared interfaces to
connect components. But shared interfaces are in contradiction with the
philosophy of independently developed components. To this issue, SCL
provides new features such as a uniform component composition model
based on connectors. Connectors represent interactions between indepen-
dently developed components. SCL also integrates component properties
which enable connections based on component state changes with no re-
quirements of specific code in components.

Keywords: component-oriented programming, unanticipated composi-
tion, connector, component property.

1 Introduction

Component-based software engineering is widely investigated by research and in-
dustry. This interest is driven by the promise of improving current software devel-
opment practices in significant ways such as reusability and extensibility [2345].
Although many models, languages and tools have been proposed, it is still dif-
ficult to apply component-oriented programming (COP) in practice. Most of
these languages are not executable and dedicated to software specification such

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 91@ 2007.
© Springer-Verlag Berlin Heidelberg 2007

92 L. Fabresse, C. Dony, and M. Huchard

as UML 2.0 [21] or architecture description such as WRIGHT [5/4]. COP is cur-
rently carried out using object-oriented languages. These languages do not offer
specific abstractions to ease COP and have to be used in a disciplined way to
guarantee a COP style.

Component-based software engineering needs component-oriented languages
(COL) as well as transformation of models [37U12] into executables or writing
programs by hand [I6]. Among the approaches on components, component-
oriented languages have been proposed in order to support COP such as Compo-
nentJ [42], ArchJava [2], Julia/Fractal [8], Lagoona [16], Piccola [I], Picolo [30],
Boxscript [29], Keris [48] or Koala [46]. The contributions of these languages are
new or adapted abstractions and mechanisms that vary quite widely from one
proposal to another such as connection, composition, port, interface, connector,
service, module, message, etc. This is quite normal with such an emerging do-
main, but there is a need for a closer analysis: which mechanisms are essential
(basic) and cannot be removed, which ones are (eventually) redundant? Which
are the key ones to achieve component composition? To a larger extent, all
these questions raise the issue of knowing which constructs and mechanisms are
the main identified features of component orientation (by analogy with object
orientation).

In this paper, we propose SCL that stands for Simple Component Language
which is the result of our study and research of component-oriented program-
ming. SCL is built on a minimal set of concepts applied uniformly in order to
ease the understanding of key concepts of component-oriented programming.
Picolo [30] and BoxScript [29] are two languages that also target this goal of
minimality for simplicity. However, SCL integrates a more powerful and exten-
sible component composition mechanism which is one of the key mechanisms
of COP. In ScL, component composition relies on first-class entities represent-
ing connections, named connectors [43I33]. Connectors offer better decoupling
between the business code inside components and the connection code inside
connectors, and thus increase the reuse of components. Some COL already pro-
pose connectors such as ArchJava [2] or Sofa [6], but ScL connectors offer more
expressiveness by integrating ideas that come from aspect-oriented program-
ming [26]. ScL also proposes the concept of property to externalize component
state without breaking component encapsulation. Properties are the support of
a new kind of component communication that is based on changes of property
state. Properties ease the use of the publish-subscribe communication pattern
without requiring any special code in the publisher or the subscriber. We choose
Squeak, a Smalltalk implementation, to implement SCL because it is a dynamic
language that offers a suitable meta-object protocol that can be easily extended.
Although it is also possible to implement SCL in another language, we choose
to experiment COP in a dynamic context and we want to provide an easily
extensible language.

The paper is organized as follows. Section 2 presents basic ideas of component-
oriented programming. Section 3 details main characteristics of the SCL language:
component classes, components, ports, interfaces, connectors and properties.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 93

Section 4 presents the current implementation of SCL in Squeak. Section 5 dis-
cusses related work. Finally, Section 6 concludes and presents future work.

2 Component-Oriented Programming: What, Why and
How ?

Component-oriented programming (COP) does for decoupling software entities
what object-oriented programming has done for object encapsulation and inheri-
tance, or aspect-oriented programming has done for crosscutting concerns. It
provides language mechanisms that explicitly capture software architecture struc-
tures. COP is based on the idea stating that software can be built by plugging
pieces of software called components. The term “component” means many dif-
ferent things to many different people depending upon the perspective taken on
the development. For example, design patterns [I7], functions or procedures [31],
modules [16], application frameworks [45], object-oriented classes [22], and whole
applications [34] are considered as components. Similarly, there are many different
definitions for the term component given in the literature [7J20/45]. In this paper,
we use the following definition : “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to composition
by third parties” [45].

Component-based software development focuses on better reuse and easier
evolution. A component must be independent of one particular context in order
to be reusable. Furthermore, reusing a component is better than creating it
from scratch because it has already been developed and tested. The evolution
and maintenance of a component software architecture may be easier than a
class hierarchy. This is because of the independent extensibility [45] property of
component-based software. Indeed, component-based applications are built out
of interconnected components and each component can evolve independently.

3 The Scl Language

In this section we describe SCL (Simple Component Language). We present and
motivate its main features and discuss the problems that arise when designing
a COL.

3.1 Component Classes and Component Instances

In object-oriented languages, the terms “class” and “instance” allow program-
mers to refer without ambiguity respectively to object descriptions in code and
to objects themselves as runtime entities. Although component-based languages
are generally built on a class/instance conceptual model, few of them spec-
ify the terms to denote respectively component classes and component objects.
Moreover, there is no widely accepted terms in component-oriented approaches
because there is not a unique definition of the component term. For example,

94 L. Fabresse, C. Dony, and M. Huchard

the two keywords component class in ArchJava and component in Compo-
nentJ denote a component class which can be instantiated. Component classes
are at the same time component descriptors, component instantiators and com-
ponent method holders such as in ArchJava. Few COLs have been proposed
with a prototype-based model i.e without descriptors such as in [47] where a
prototype-based language has been proposed on the top of Java in order to pro-
vide primitives to dynamically build, extend and compose software components
from Java objects. We think that the arguments for the use (or not) of classes is
similar in the component and object worlds and that both approaches are worth
to be considered. In SCL, we have chosen a class/instance approach. A compo-
nent is a runtime entity and it is an instance of a component class. Component
classes are written by the component programmer in order to create off-the-shelf
reusable pieces of software while the software architect creates an application by
choosing some component classes and then connecting instances i.e components.
Figure [1l shows the code to create a component class and the code to create a
component using the new message.

SCLCOMPONENTCLASSBUILDER create: #MyComponent.

¢ := MYCOMPONENT new .

Fig. 1. A component descriptor and a component instance

3.2 Component Provisions and Requirements

Component interfaces and services. As stated by Szyperski [45], a compo-
nent can only be accessed through well-defined interfaces. Component interfaces
enforce explicit context-dependencies and a high-level of encapsulation. A com-
ponent interface describes only a service or a group of services provided by a
component to other components. A component provides a lot of services through
different interfaces but its clients can only use those ones defined in the inter-
face which they are connected to. Component interfaces also specify the services
that are required by a component to be able to provide its own services. Basi-
cally, a service is a subprogram defined in a component, such as a method in
the object-oriented model. The term service is used to refer to a high-level func-
tionality. For example, a Network service is at least composed of four methods:
open: to initialize a network connection, close to finish the connection, send:
and receive to respectively send and receive data through an open connection.
Component-based languages propose different concepts to describe component
interfaces such as ports, interfaces, protocols, etc. In SCL, we choose to represent
component interfaces by ports described by interfaces. We argue that these two
concepts are enough to describe component interfaces.

Ports. Ports represent interaction points of a component such as in Arch-
Java [2] or ComponentJ [42]. The port construct has not the same definition and

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 95

characteristics in all COLs. For example in Picolo, ComponentJ or Fractal (ports
are called external interfaces in Fractal), ports are unidirectional because they
provide or require a set of services. In ArchJava or UML 2.0 [I1], ports are
bi-directional and the component invokes external services and receives service
invocations through the same port. Required services through a port have to be
provided by the same component. For example, a component that requires a Net-
work service through one of its ports, expects services open: , send:, receive
and close, will be executed by the same component. However, provided services
are accessible to one or many other components. Providing and requiring ser-
vices through one port may result in limiting the use of the provided services
to only one component at a time. SCL integrates two kinds of unidirectional
ports: those ones for accessing required services and those ones for giving access
to provided services. A port has a name. A component can not have two ports
with the same name. A port name is used in the code to specify through which
port a service is invoked. A service is always invoked through a port by message
sending (the same term as in object world is used). Syntactically, the port is the
receiver but in fact, the real receiver of a message is always a component that
will be known at connection time. Note that it is worth to invoke a service that
the component itself defines. All components have a special internal provided
port named self that can not be accessed outside of the component. In this
context, the invocation self foo is equivalent to a service invocation that re-
quires no connection to be achieved and that executes the foo service of current
component. To sum up, an SCL component offers or requires services, receives
or sends service invocation, and can be connected through its ports as we will
see later in Section B3

Interfaces. An interface describes the valid interactions through a port in or-
der to document the component or to enable the automatic validation (static
or dynamic) of the component uses and the connections. In COLs, these de-
scriptions vary from simple ones such as informal texts in natural languages to
complex ones such as formal descriptions. These descriptions are classified in
two categories: syntactic and semantic.

Syntactical descriptions are generally represented using interfaces (such as in
Java). An interface defines a named type describing a set of method signatures.
Validation of the use of a port relies on typing rules. For example, a port that
requires an interface I; can be connected with a port that provides an interface
I> where the type defined by I; is a supertype of the one defined by I. Using
interfaces implies that independently developed software components have to
refer to a common standard defined by interfaces in order to inter-operate. Other
solutions exist, such as structural type systems [I0], that offer better decoupling
between component classes. But structural type systems are less expressive than
named type systems (such as with interfaces) as said in [9], “/...] types stand
for semantical specification. While the conformance of an implementation to
a behavioral specification cannot be easily checked by current compilers, type
conformance is checkable. By simply comparing names, compilers can check that
several parties refer to the same standard specification.”. For example, writing

96 L. Fabresse, C. Dony, and M. Huchard

that “a component requires a stack” is more expressive than writing that “a
component requires two services pop and push:” but in the first case there is a
need for a global stack definition.

Semantical descriptions are harder to define and are often based on formal
theory, such as CSP in WRIGHT [§] or protocols in Sofa [40]. For example, pro-
tocols allow component programmers to define the valid sequences of service
invocations through regular expressions. In our last example of the Network ser-
vice, it is important to describe that firstly the open: service has to be invoked,
then the send: and receive services can be used, and finally the close service
must be invoked to finish the interaction.

Ports and Interfaces in Scl. We choose to decouple component classes and
avoid global definitions such as named interfaces. This is the reason why inter-
faces are service signature sets in SCL and not named interfaces. But, it is possible
to extend SCL to support more sophisticated interfaces as protocols. Figure
shows an example of component class with ports and Figure[Blshows the SCL code
needed to declare it. PASSWORDMANAGER is a component class created by the
bootstrap method sCLCowroneNTBUILDER> >create: that creates an empty component
class. In its internal service named init, the PASSWORDMANAGER is composed
of three ports: Randomizing is a required port since it is used to invoke exter-
nal services of the component; Generating and Checking are required ports
because they offer some services of the component and receive service invoca-
tions from third parties. Since we do not focus on static or dynamic validation
of connections, it is not mandatory to specify interfaces of required ports. The
same situation happens in dynamically-typed languages when method param-
eters are not described by a static type. However, interfaces of provided ports
are needed because they specify which services of the components are provided
through the port.

PasswordManager
Provided Ports Required Ports
generatePwd: size
Generating A4 e
Interface B * i := Randomizing generateNumber. Randomizing
. generatePwd: -‘j s * *B
 generateADigitsOnlyPwd: generateADigitsOnlyPwd: size e
Tt Checking "o " generateNumber

> | = isValidPwd: aPwd

Fig. 2. A ScL component. Ports are represented by squares on the component boundary
and triangles designate the direction of service invocations. Ports are described by
interfaces which are service signature sets.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 97

SCLCOMPONENTCLASSBUILDER create: #PasswordManager.

PASSWORDMANAGER>>init
self addPort: (SclPort newNamed: #Randomizing requires:
(SclInterface new with: {#generateNumber})).
self addPort: (SclPort newNamed: #Generating provides:
(Scllnterface new with: {
#generatePwd : .
#generateADigitsOnlyPwd :

)
self addPort: (SclPort newNamed: #Checking provides:
(SclInterface new with: {#isValidPassword:})).

PASSWORDMANAGER>>generatePwd: size

» ”

i := Randomizing generateNumber.
» 5

Fig. 3. A component class declaration

3.3 Component Composition

There are two main mechanisms for unanticipated composition of components:
connection and compositio. Unanticipated is the key-adjective attached to
composition or connection that makes component-based software worthwhile.
To be composable, a component definition should only state what it provides
and what it needs and should make no assumption about which other concrete
components it will be composed with later on.

Connection. As said in [36], “a component is a static abstraction with plugs”.
In Sci, plugs of components are their ports. The connection is the mechanism
that connects component ports. The connection mechanism is provided through
various forms in actual COLs, e.g. the connect primitive and connectors in
ArchJava [3], the plug primitive in ComponentJ [42], connectors in Picolo [30]
or bindings in Fractal [8]. Connections are the support for the communication
between components and they enforce the decoupling between components which
can not communicate if they have not been connected.

Connection mismatches are identified consequences of unanticipated connec-
tions [41]. These mismatches occur when we want to connect components that
semantically fit well but their connection is not possible because they are not
plug-compatible. Mismatches can be solved in whole generality by defining ded-
icated components as specified by the Adapter design pattern [I7]. There is a
need for glue code in connections to adapt components. A connection mechanism
must be flexible to make the definition of adapters useless.

Connecting components could be achieved using language primitives such as
plug in ComponentJ [42]. Other component models propose connections as first-
class entities named connectors such as Sofa [6] or ArchJava [3] and most of
Architecture Description Languages [32], such as WRIGHT [54]. Connectors are

! The term composition is used here for a mechanism that creates a new component
out of existing ones.

98 L. Fabresse, C. Dony, and M. Huchard

architectural building blocks used to model interactions among components and
rules that govern those interactions [43]. Unlike components, connectors may not
correspond to compilation units or deployment units. In SCL, SCLCONNECTOR is
the most general form of connectors which is composed of two sets of ports named
sources and targets and glue code that only uses these ports to establish the
connection. SCLCALLCONNECTOR is the general connector dedicated to service
invocation connections as shown in Figure [l

Required Provided
Ports

<<SclCallConnector>>

Sources Targets

) e

Fig. 4. The general form a SCL connector

In a ScLCALLCONNECTOR, sources are required ports and targets are provided
ports. It is possible to define specialized connectors that provide a general pur-
pose glue code or restrict sources and targets. Among the various existing con-
nector types, there is one, SCLBINARYCONNECTOR that restricts itself to one
source and one target. Figure[Blshows an example of binary connection between a
PASSWORDMANAGER component and a RANDOMNUMBERGENERATOR, compo-
nent. This connection satisfies the required service of the PASSWORDMANAGER
through its Randomizing port, using the service generateNumber provided
by the RANDOMNUMBERGENERATOR through its Generating port. Figure [l
shows the code to establish this connection.

The glue code of a ScLCALLCONNECTOR is a Smalltalk block whose parameters
are the set of sources, the set of targets and the current service invocation (which
includes the source port, the selector and parameters) that has to be performed.
In the glue code of this example, the result of the rand service is adapted since the
generatedpassword is expected to return a number in the interval [0, 26] while
the rand service returns a number in the interval [0, 1]. Despite of the fact that
this is a simple example, it is important to note that connecting independently
developed software components must deal with these kinds of problems. The glue
code in connectors is a good place to tackle these adaptation problems. If no glue
code is specified in a SCLBINARYCONNECTOR, the default behavior is to forward
all services that come from the source port to the target port and to return
the result. This is the same as the Fractal bind primitive or the ComponentJ
plug primitive.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 99

PasswordManager RandomNumberGenerator

Generating

<<SclBinaryConnector>>
Randomizing Generating

——————— >| glue code —— >

Checking
Sources Targets

Fig.5. A ScL connection of two components

Like the ScLBINARYCONNECTOR, it is possible to build reusable connectors,
such as BROADCASTERCONNECTOR, that broadcasts each service invocation to
all targets, or FIRSTRESULTCONNECTOR that returns the first non-nil result by
sending invocation successively to each target.

spm := PASSWORDMANAGER new .
srng := RANDOMNUMBERGENERATOR new .
SCLBINARYCONNECTOR new
source: (spm port: #Randomizing)
target: (srng port: #Generating)
glue: [:source :target :message |
“(target rand x 26) aslnteger
15

connect .

Fig. 6. Connecting two components

Composition. Composition is the mechanism that builds a composite compo-
nent out of components and connections. Encapsulated components are generally
called sub-components of the composite. Composite components are useful to
abstract over complex systems and provide a new reusable software entity that
hide implementation details. This mechanism is provided through various forms
in existing languages, e.g the compose primitive in ComponentJ [42], composite
components in Fractal or aggregation and containment in (D)COM [34].

Figure [and Figure 8 show the architecture and the code of a simple com-
posite in SCL. A composite component ¢ instance of the component class C
encapsulates two components a and b and one connection. Each instance of C
forwards the provided port pb of its subcomponent b for external uses. This
example is quite simple and more complex ones require the use of SCLFORWARD-
ConNECTOR s. These kinds of connectors are used to forward externalize services
of sub-components in a composite component. The sources and targets are all
required or provided ports and the glue code can be used to solve problems
such as name conflicts, etc. Figure [0 and Figure [0 shows this situation with a
composite component that provides two services on a same port but provided
by two different sub-components.

100 L. Fabresse, C. Dony, and M. Huchard

pa rb pb pb

e

Fig.7. A composite component that forwards a port

3.4 Separation of Concerns in Component Applications

Separation of concerns [38] principle states that a software system should be
modularized in such a way that different concerns can be specified as inde-
pendent as possible in order to maximize understandability and maintenability.
Some concerns are difficult to encapsulate in standard software units (compo-
nents or objects), such as management of transactions, logs, security, etc. To
tackle the problem of the scattered code of these concerns, aspect-oriented pro-
gramming [26] introduces aspects. An aspect is the modularization of a crosscut-
ting concern. T'wo approaches are distinguished in AOP. Asymmetric approaches
consider aspects as different entities from those ones that compose the base sys-
tem (objects or components), such as AspectJ [25], or JAsCo [44]. Symmetric
approaches try to use the same entities to model the base system and aspects.
This second approach is better for reusability because if aspects are modeled as
components, they can be used as regular components as well as aspects. A lot
of approaches try to merge in a symmetric way aspect-oriented and component-
oriented approaches to benefit from the modular properties of both approaches,
such as Fractal-AOP [14] or FAC [39)].

In ScL, we adopt a symmetric approach with limited aspect-oriented features
which are provided through special connectors and ports characteristics. The join
points — well defined points in the execution of a program where aspects can be
woven — are generally method calls, method call receptions, method executions
or attribute accesses. The supported joint points in SCL are: before/after /around
a service invocation or connection/disconnection on a port. Figure [Tl shows an
example that uses an ScLFLowCoNNECTOR and a regular LOGGER component
to add the logging support to a component ¢ through its port pc.

In a ScLFLOWCONNECTOR, all source ports are coupled with a keyword (be-
foreServiceInvocation, beforeConnection, ...) that specifies when the glue code
has to be executed. At execution time, when a service invocation arrives on a
port, glue code of attached connectors are executed in the same order as in AOP
(around, before, after). Conflicts are possible, for example if multiple glue codes
have to be executed before a service invocation on the same port, the glue code
of the last connected connector will be executed first. This rule lets the architect
deal with potential weaving problems.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk

101

SCLCOMPONENTCLASSBUILDER createComposite: #C.

C>>init
self addSubComponent: A new named: a.
self addSubComponent: B new named: b.
self forwardPort: (b port: #pb).

SCLBINARYCONNECTOR new
source: (b port: #rb)
target: (a port: #pa) ;
connect .

Fig. 8. Declaration of a composite component class

C
a
pa
foo ---
pc
b ﬂ foo
pb bar
bar --.

Fig. 9. Port forwarding using a connector

SCLCOMPONENTCLASSBUILDER createComposite: #C.

C>>init
self addSubComponent: #A named: a.
self addSubComponent: #B named: b.
self addPort: (SclPort new: #pc
provides: (Scllnterface new with: {#foo. #bar}).

SCLFORWARDCONNECTOR new
sources:{self port: #pc}
targets:(b port: #pb).
(a port: #pa))
glue: [:sources :targets :message |
(message selector == #foo) ifTrue:|
“targets first perform: message
] ifFalse: [
(message selector == #bar) ifTrue:|
“targets second perform: message

].
].
1

connect .

Fig. 10. Using a connector to forward services in a composite component

102 L. Fabresse, C. Dony, and M. Huchard

1 := Logger new.

SCLFLOWBINARYCONNECTOR new
source:((c port: #pc) beforeServicelnvocation)
target:(1l port: #Logging)
glue: [:source :target :message |
target log: ’The ’, message selector , ’~ message will be sent to a’
Ik

connect .

Fig. 11. Modify the control flow using a connector

3.5 Component Properties and Publish/Subscribe Connections

Triggering operations as a consequence of state changes in a component is re-
lated to Observer design pattern [I7] or procedural attachments [35]. In frame
languages, it is possible to attach procedures to an attribute access which is
then executed each time this attribute is accessed. These kinds of interactions
are particularly used between “views” (in the MVC sense [27]) and “models”.
More generally, the publish/subscribe [I3] communication protocol is a very
useful communication pattern to decouple software entities as said in [I8]: “The
main invariant in this style is announcers of events do not know which com-
ponents will be affected by those events”. In component-based languages, this
must be done in an unanticipated way and with strict separation between the
component code and the connection code to enable components reuse. However,
existing proposals fail to solve these two main constraints. Connecting compo-
nents based on event notifications always require that component programmers
add special code in components. We identify the two following problems:

Publishers have to publish events. The component programmer has to add
special code such as event signaling in components. For example, in the
Java Bean model, the programmer has to manage explicitly the subscribers
list (add and remove subscriber methods). In the CCM (Corba Component
Model), the component programmer has to manage the event sending by
adding a special port to his component that is called an event source, and
sends events in the component code through this port. In ArchJava, the
component programmer declares broadcast methods (required methods that
return void) and invokes them in the component code to signal events. This
method is then connected by the architect to multiple provided methods of
subscriber components that receive the events. In all cases, the architect can
not reuse a component if its programmer has not added special code in the
component to signal the event that he needs.

Emitters have to receive events. In the CCM, the component programmer
has to provide its components with event sinks that are special ports to
receive events. An event sink can be connected by the architect with one or
more event sources if they share a compatible event type. This mechanism is
more limiting than the ArchJava or the Javabeans one where the subscriber
components have only regular methods that are invoked using connections.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 103

In order to increase the component reuse, we have to decouple the connec-
tion code from the business code written by the component programmer. The
programmer has to focus on the business code and the design of the component
i.e what it requires and what it provides. In SCL, there are three ways to enable
publish/subscribe connections:

1. The component programmer integrates the event signaling in the compo-
nent code. Event signaling in SCL can be done, similarly as in ArchJava,
by invoking a required service in the publisher component and using regular
ScLCALLCONNECTOR to link publishers and subscribers.

2. The component programmer does not integrate the event signaling in the
component code and ScLFLOowCONNECTORS can be used by the architect
to detect the events that he needs. For example, if the architect wants to
detect when a stack becomes empty (an EmptyStackEvent), he can use an
ArFTERCONNECTOR on the port that provides the pop service and test in the
glue code if the stack still contains elements to detect such situation.

3. The component programmer has declared properties. This property concept
enhances the idea of property of the Javabeans component model [22] with
strict separation between component code and connection code. A property
is an external state of a component. For example, a COUNTER component
has a property named count. This means that it is possible to get and set
a value to the count property of the COUNTER. Figure shows the ScL
code for this declaration.

SCLCOMPONENTCLASSBUILDER create: #Counter.

COUNTER>>init
self addAttribute: #value.
self addPort: (SclPort new: #Counting
provides: (Scllnterface new with: {#dec. #inc}).

self addProperty: #Count read: [~ value] write: [:nv | value := nv]|.
C>>inc

self count: (self count + 1)
C>>dec

self count: (self count — 1)

Fig.12. A Counter component class with a property

When a programmer declares a property, the component is automatically
composed of two ports: an access port and a notifying port. The property ac-
cess port is a provided port that provides, at least, getter and setter services
using the two blocks given during the property declaration. The notifying port
is a required port, which is used to invoke services during property accesses.
These services are defined in the SCL component model. For example, the service
nac:value:oldValue: (nac is an acronym for Notify After Change) is invoked

104 L. Fabresse, C. Dony, and M. Huchard

Counter
Counting me L Count

| - |

. I
B : e
dec 1| =|| I nac:value:oldValue: :
'=F-! ! nbc:value:oldValue: :

- count
count

Fig. 13. A counter component with a value property

gui := LABEL new.
counter := COUNTER new.

SCLBINARYNACCONNECTOR new
source: (counter notifyPortOf: #Count)
target: (gui port: #Displaying)
glue: [:source :gui :message |
gui displayText: (message arguments second).
]; connect.

Fig. 14. A state changes connection based on a component property

after a property is modified with the new and the old value of the property as
parameters. Another service, the nbc:value:newValue: (nbc is an acronym
for Notify Before Change) service, is invoked before the property is modified
with the current value and the next value of the property as parameters. In
fact, all defined services have two main characteristics: when they are invoked
(before or after the property modification) and what a connected component
is able to do (nothing, prevent the modification or change the property value).
Special or regular connectors can be used to connect properties since they are
just two regular ports. An example of connection using properties is depicted on
Figure [[3 and the corresponding SCL code is shown on Figure [[4l

In this example, a SCLBINARYNACCONNECTOR is used. This connector fil-
ters incoming service invocations on the source port and only focuses on the
nac:value:oldValue service. After each modification of the value property
of the counter, the glue code of the connection is executed and the GUI
component is refreshed with the new value (the second parameter of the
nac:value:oldValue service). Actually, SCL provides different kinds of con-
nectors like SCLBINARYNACCONNECTOR, SCLBINARYNBCCONNECTOR, PROPERTY-
BINDERCONNECTOR ensuring that the value of the target property is always
synchronized with the value of the source property. To sum up, component
properties are a useful means for component programmers to directly express
the external state of components instead of using syntactical conventions and
for architects that can use them to connect components.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 105

4 Implementation

The actual prototype of ScL [28] is implemented in Squeak/Smalltalk [24].
Squeak is an open and highly portable implementation based on the original
Smalltalk-80 system [19]. Figure[T5l shows a part of the class diagram of the core
model.

. < has . defines 1
iona) 5 <« defines 1 owns Bk
Signature Service Comp Property
S
¥ o 1
*
A . .
roups *® sources
group Port C
1 onnector
* +targets
1
Interface v
& ‘o,
7
1 ey
B ProvidedPort RequiredPort L‘ CallConnector FlowConnector

< requires

Fig.15. UML class diagram of the current implementation of SCL

This figure shows only main connector families. In [33], a taxonomy of soft-
ware connectors has been established and eight kinds of connectors have been
identified. Similarly to the work done for ArchJava in [3], we have implemented
connectors of each kind. This shows that the connector model of SCL is suitable
to perform a large variety of connectors.

The current SCL syntax is the same as the Smalltalk one although some
changes in semantics have been done. For example, the syntactical receiver of
a service invocation is a port but the real Smalltalk receiver is not this port
but the component which this port belongs to. Because we do not implement
ScL with an evaluator or a compiler but directly with Smalltalk constructs, it is
easier to change and evolve the implementation. It is also difficult to implement
special things that are too far from the Smalltalk mechanisms.

5 Related Work

Understanding or teaching COP. Picolo [30] and BoxSecript [29] are two
frameworks for introducing (teaching) components. Picolo is written in Python
and Boxscript in Java. They are small and contrary to SCL, they integrate a
simple binary connection mechanism.

Architecture description languages (ADLs). These languages are an im-
portant part of the current researches in component-oriented languages. In [32],
a classification of the most known ADLs has been established. For example,
WRICGHT [5] is one of these languages that integrates connector support. But
WRIGHT, as many of these languages, is dedicated to simulation and formal ver-
ification. Since ADLs are not executable languages, it is not possible to build an
application using it.

106 L. Fabresse, C. Dony, and M. Huchard

ArchJava [2I3] is a Java extension introducing software architecture con-
cepts to express architectural structure of applications within an implementation
in order to ensure that the implementation conforms to architectural constraints.
ArchJava classes support bidirectional ports in which methods are provided, re-
quired or broadcasted. The primitive connection mechanism (connect keyword)
is a coarse-grained one because it is based on bidirectional ports. ArchJava does
not support properties and component programmers have to write code in com-
ponents to enable connections based on component state notifications.

Fractal [] is a recursive and reflective component model. A component has
external interfaces (ports) which provides (server interface) or required (client
interface) a defined set of services. Components are connected through bindings
between external interfaces. A primitive binding is a fixed interface connection
mechanism that binds one client interface with one server interface. Binding
components also called connectors represent composite bindings to create com-
plex connections. In SCL, components and connectors are different concepts be-
cause these two concepts fulfill different purposes, components are the business
reusable software units while connectors have to fix connection semantics and
deal with connection problems. Julia is the implementation reference of the Frac-
tal model in Java, and Fractalk [I5] is an implementation of Fractal in Squeak.

ComponentJ [42] is another Java extension for component-oriented pro-
gramming. Components provide or require one interface per port. The compo-
nent programmer defines methods inside method blocks that can be plugged
into ports. Plug operations bind one component method block or port to a port
according to their interfaces. Component composition is done through dynamic
composition (compose keyword) and returns a new component. ComponentJ is a
strongly typed language ensuring plug operations and composition. There is no
connector support in ComponentJ and it is only possible to connect components
inside a composite. A component can only be instantiated if it is closed (without
unbounded required services) even if all required services are not necessary for
the current application.

Javabeans [22] has been one of the first component models allowing program-
mers to connect independently developed software entities. Javabeans program-
mers have to write special connection code (essentially Observable code from
the Observer pattern) and to respect syntactical rules to ensure that their Jav-
abeans can be automatically connected with other Javabeans using automatic
Adaptor [I7] generation. Our properties, inspired from the Javabeans model, do
not enforce component programmers to write specific connection code.

Component-oriented languages. These languages enable to code an applica-
tion using a component approach. These languages do not integrate the ADLs
features and provide object-oriented extensions to program with components.
For example, Lagoona [I6] is based on the idea that components are modules that
contain class and message definitions. Note that most of proposed component-
oriented languages are Java extensions (Lagoona, Keris, ComponentJ, ArchJava,
Javabeans, Julia/Fractal, ...). There are few proposals using a dynamic language

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 107

and none in Smalltalk, except Fractalk that is an implementation of Fractal in
Squeak.

Mixing component and aspect oriented programming. As said in sec-
tion B4 we only consider symmetrical approaches such as FAC [39] or Fractal-
AOP [I4] where aspects are regular components. This is to increase the reuse
of components that can be used as regular components as well as aspects com-
ponents. The specificity of SCL is that nothing is written in a component (no
special interface has to be implemented). The architect decides to use a com-
ponent as a base component or as an aspect component and uses the special
connector SCLFLOwWCONNECTOR. This SCL feature is clearly not a complete sup-
port of AOP, but an attempt to bring some flexibility of AOP in SCL respecting
that components are independently developed and composed.

6 Conclusion

Component-based software development is founded on the unanticipated compo-
sition of independently developed software components. Such a mechanism must
be offered to programmers and many languages integrate some concepts and
mechanisms to achieve this. In this paper, we present SCL a concrete component-
oriented language. We believe that SCL represents a simple and uniform synthesis
of current proposal on component-oriented programming. SCL also brings new
features like a general purpose connector model. Connectors are useful to provide
an extensible connection mechanism that solves component connection prob-
lems. They offer a unified entity that enable standard required/provided con-
nections and also event-based component connections due to special connectors
and component properties. A component programmer only declares properties
that represent external state of components. A software architect can express
connections on the basis of properties notifications with the same connection
mechanism based on connectors.

Ongoing researches on SCL are focused on three areas. First, extending the
component model of SCL in order to better support dynamically features. For
example, dynamically adding or removing ports to a component could be a great
solution to deal with components that have a potentially unbounded number of
connections such as a Web Server component. Second, we plan to provide a
stable release of the current implementation of SCL and integrate tools dedi-
cated to component-oriented programming. And finally, developing large scale
applications using SCL will certainly show us interesting results about the SCL
expressiveness compared to existing component-oriented languages which are
mainly statically typed ones.

References

1. Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts —
A Tour of Piccola. In Mehmet Aksit, editor, Software Architectures and Component
Technology, pages 261-292. Kluwer, 2001.

108

10.

11.

12.

13.

14.

15.
16.

17.

18.

L. Fabresse, C. Dony, and M. Huchard

Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. In ICSE, pages 187-197. ACM, 2002.
Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin. Language
support for connector abstractions. In Luca Cardelli, editor, ECOOP, volume 2743
of Lecture Notes in Computer Science, pages 74-102. Springer, 2003.

. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie

Mellon, School of Computer Science, January 1997. Issued as CMU Technical
Report CMU-CS-97-144.

Robert Allen and David Garlan. The Wright Architectural Specification Language.
Technical report, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, 1996.

Dusan Balek and Frantisek Plasil. Software connectors and their role in component
deployment. In Proceedings of DAIS 01, Krakow, Poland, September 2001. Kluwer
Academic Publishers.

Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Frantisek Plasil, Gus-
tav Pomberger, Wolfgang Pree, Michael Stal, and Clemens A. Szyperski. What
characterizes a (software) component? Software - Concepts and Tools, 19(1):49-56,
1998.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. An Open Component Model and Its Support in Java. In Ivica
Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau, editors,
CBSE, volume 3054 of Lecture Notes in Computer Science, pages 7T—22. Springer,
2004.

Martin Biichi and Wolfgang Weck. Compound types for Java. In OOPSLA’98:
Proceedings of the 13th ACM SIGPLAN conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages 362-373, New York, NY, USA,
1998. ACM Press.

Luca Cardelli. The Handbook of Computer Science and Engineering, chapter 103,
Type Systems, pages 2208-2236. CRC Press, Boca Raton, FL, 1997.

John Cheesman and John Daniels. UML components: a simple process for spec-
ifying component-based software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

Michael Eichberg. Mda and programming languages. In Workshop on Generative
Techniques in the context of Model Driven Architecture (OOPSLA ’02), 2002.
Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114-131,
2003.

Houssam Fakih, Noury Bouragadi, and Laurence Duchien. Aspects and software
components: A case study of the FRACTAL component model. In Minhuan Huang,
Hong Mei, and Jianjun Zhao, editors, International Workshop on Aspect-Oriented
Software Development (WAOSD 2004), September 2004.

FracTalk. Fractal Components in Smalltalk http://csl.ensm-douai.fr/FracTalk.
Peter H. Frohlich, Andreas Gal, and Michael Franz. Supporting software com-
position at the programming-language level. Science of Computer Programming,
Special Issue on New Software Composition Concept, 56(1-2):41-57, April 2005.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, March 1995.
David Garlan and Mary Shaw. An introduction to software architecture. In V. Am-
briola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, pages 1-39, Singapore, 1993. World Scientific Publishing Company.

http://csl.ensm-douai.fr/FracTalk

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

ScL: A Simple, Uniform and Operational Language for COP in Smalltalk 109

Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989.

Bernhard Gréne, Andreas Knopfel, and Peter Tabeling. Component vs. component:
Why we need more than one definition. In FCBS, pages 550-552. IEEE Computer
Society, 2005.

Object Management Group. Uml 2.0 superstructure specification. Technical report,
Object Management Group, 2004.

Graham Hamilton. JavaBeans. API Specification, Sun Microsystems, July 1997.
Version 1.01.

George T. Heineman and William T. Councill, editors. Component-based software
engineering: putting the pieces together. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to
the future: the story of Squeak, a practical Smalltalk written in itself. In OOPSLA
’97: Proceedings of the 12th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 318-326, New York, NY,
USA, 1997. ACM Press.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In Jgrgen Lindskov Knudsen, ed-
itor, ECOOP, volume 2072 of Lecture Notes in Computer Science, pages 327-353.
Springer, 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220-242. Springer Verlag, 1997.

Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. In Journal of Object-Oriented
Programming, volume 1, pages 26-49, Aout-Septembre 1988.

Simple Component Language. http://www.lirmm.fr/~fabresse/scl/.

Y. Liu and H. C. Cunningham. Boxscript: A component-oriented language for
teaching. In 43rd ACM-Southeast Conference, volume 1, pages 349-354, March
2005.

Raphaél Marvie. Picolo: A simple python framework for introducing component
principles. In Euro Python Conference 2005, Géteborg, Sweden, june 2005.

M. D. Mcllroy. Mass produced software components. In P. Naur and B. Ran-
dell, editors, Proceedings, NATO Conference on Software Engineering, Garmisch,
Germany, October 1968.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. Software Engineering,
26(1):70-93, 2000.

Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a taxonomy of
software connectors. In ICSE ’00: Proceedings of the 22nd international conference
on Software engineering, pages 178-187, New York, NY, USA, 2000. ACM Press.
Microsoft. DCOM technical overview. Microsoft Windows N'T' Server white paper,
Microsoft Corporation, 1996.

M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor, The
Psychology of Computer Vision, pages 211-281. mgh, ny, 1975.

Oscar Nierstrasz and Laurent Dami. Component-oriented software technology. In
Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software Com-
position, pages 3—28. Prentice-Hall, 1995.

http://www.lirmm.fr/~fabresse/scl/

110

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

L. Fabresse, C. Dony, and M. Huchard

Object Management Group. Model Driven Architecture, 2003. hitp://www.omg.
org/mdal.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053-1058, December 1972.

N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A model for developing
component-based and aspect-oriented systems. In Proceedings of the 5th Interna-
tional Symposium on Software Composition (SC’06), volume 4089 of Lecture Notes
in Computer Science. Springer, March 2006.

Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software compo-
nents. IEEE Trans. Softw. Eng., 28(11):1056-1076, 2002.

Johannes Sametinger. Software engineering with reusable components. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

Joao Costa Seco and Luis Caires. A basic model of typed components. Lecture
Notes in. Computer Science, 1850:108-129, 2000.

Mary Shaw. Procedure calls are the assembly language of software interconnec-
tion: Connectors deserve first-class status. In ICSE ’93: Selected papers from the
Workshop on Studies of Software Design, pages 17-32, London, UK, 1996. Springer-
Verlag.

Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an aspect-oriented
approach tailored for component based software development. In AOSD ’03: Pro-
ceedings of the 2nd international conference on Aspect-oriented software develop-
ment, pages 21-29, New York, NY, USA, 2003. ACM Press.

C. Szyperski. Component Software: Beyond Object-Oriented Programming (2nd
Edition). Addison-Wesley, 2002.

Rob C. van Ommering. Koala, a component model for consumer electronics product
software. In Frank van der Linden, editor, ESPRIT ARES Workshop, volume 1429
of Lecture Notes in Computer Science, pages 76-86. Springer, 1998.

Matthias Zenger. Type-safe prototype-based component evolution. In Proceedings
of the European Conference on Object-Oriented Programming, Malaga, Spain, June
2002.

Matthias Zenger. Keris: evolving software with extensible modules: Research arti-
cles. J. Softw. Maint. Evol., 17(5):333-362, 2005.

http://www.omg.org/mda
http://www.omg.org/mda

Let’s Modularize the Data Model Specifications of
the ObjectLens in VisualWorks/Smalltalk

Michael Prasse

Collogia Unternehmungsberatung AG,
Ubierring 11, D-50678 Ko6ln, Germany
michael .prasse@collogia.de

Abstract. The ObjectLens framework of VisualWorks maps objects to tables.
This mapping is described in a data mapping model, which itself is specified in
one dataModelSpec method. This method is monolithic and defines the whole
data model of an application. This is a suitable approach to start with. However,
when the business area extends to a set of similar applications, like a software
product family, each of these applications needs its own data model specifica-
tion. All specifications of the product family would be quite similar but there is
no appropriate reuse-mechanism, which could be used. Consequently, the
monolithic design specifications lead to a high degree of redundancy, which
complicates software development and maintenance. Therefore, this paper de-
scribes an approach, which leads to a separation of the monolithic data model
specifications. The main idea is to define the mappings of each class in the class
itself using inheritance and generate the whole specification from a list of single
class data models. In this way, declarative and generative programming tech-
niques are combined.

Keywords: ObjectLens, Smalltalk, VisualWorks, Design Pattern, Software
Product Families, OR-Mapping, Generative Programming.

1 Introduction

Since 1997 our software engineering group develops applications in the domain of
pension schemes with VisualWorks/Smalltalk. At the beginning this software was
specified for one customer. In the course of time the number of customers and the
application domains grew. Today we support more than 20 customers and all kinds of
pension schemes in Germany including long-term accounts of employees. The system
architecture is extended from a fat client architecture to an application service provider
architecture including a web application server, which is also built in VisualWorks.

To reduce software engineering costs we organized our applications as a product
family. There is a single source base for all applications improving reuse of existing
modules. The core is organized as a framework including common GUI-standards,
common domain specific models, database access layers and standard management
and administration modules. The applications extend this core by defining new spe-
cific modules using object-oriented techniques like inheritance, object composition
and meta programming.

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 1111133,/2007.
© Springer-Verlag Berlin Heidelberg 2007

112 M. Prasse

But there is one area where we could not achieve a high degree of reuse directly. This
is how object-relational mappings are defined in the ObjectLens framework, which is
the heart of the data base access layer. In the ObjectLens, the object-relational mappings
are described in one monolithic specification. We need a specific object-relational map-
ping for each application. All these specifications have common parts. Defining a new
specification starts with copying a suitable specification and changing it. This copy-
paste approach leads to a high level of redundancy and makes data model changes of
common parts more difficult because many specifications have to be updated. In this
paper we want to describe a more sophisticated solution solving these problems.

The presented solution is a pragmatic one. The first aim was to solve the redundan-
cy and maintenance problem concerning the data model specifications. It was not our
goal to do extensive academic research on object-relational mapping or to develop a
new object-relational mapping framework. For example, there is no opportunity to ex-
change the base object relational mapping of our applications. The costs and time are
in no relation to the expected benefits. For these reasons our solution has to be inte-
grated in the existing ObjectLens. Of course to achieve our primary aim of improving
the data model specifications we used an engineering approach including analysis,
design, risk management, testing and stepwise deployment in production.

The article is structured as following. First the ObjectLens framework of Visual-
Works is introduced. Then the data model specifications of the ObjectLens and their
disadvantages for our product line approach are discussed in detail. Afterwards we
present our solution and its integration in the ObjectLens framework. In the next sec-
tion we describe the generation of our new data model specification parts from the old
specifications and how we solve specification conflicts. The conclusion summarizes
our experiences.

2 ObjectLens Framework

The ObjectLens Framework is an integrated part of VisualWorks since Version 2.0
from 1994 ([5], [19]). The major concepts of the ObjectLens have not changed since
then. It is an early developed access framework for mapping objects to relational data-
base tables. It is comparable to other early OR-mapping tools from this time like
TOPLink by The Object People Inc., now Oracle, Polar by IBL Ingenieurbiiro Letters
GmbH, Arcus Relational Database Access Layers by sd&m, MicroDoc Persistence
Framework by MicoDoc GmbH or Crossing Chasms Pattern Language by Kyle
Brown ([4], [14], [15], [18], [23])".

In the next subsections, we describe the architecture, the object mapping to tables
and the programming metaphor of the ObjectLens.

2.1 Architecture

The ObjectLens Framework consists of four modules, which are described abstractly
in Figure 1. The declaration module defines the specifications to describe the data

! We enumerate only approaches which were introduced at the same time like the ObjectLens.
Therefore, GLORP (Smalltalk), JDO (Java) or Hibernate (Java, .NET) are not considered
([31, [16], [22]).

Let’s Modularize the Data Model Specifications of the ObjectLens 113

model in a logical way. This module contains classes for describing the data model
and the data model specification. The data model is a set of objects and defines data
structure types, variables, types, and foreign key relationships. The data model speci-
fications are a declarative way to define this data model. Furthermore, it uses the da-
tabase module, which describes database tables and columns, to specify the mapping
to the logical database design. Together, both modules describe the logical database
design and mapping. There are also tools like the data modeler and the mapping tool,
which allow to specify the data model specifications tool based. Furthermore, you can
generate or adapt the logical database structure from a data model specification auto-
matically. This process is called "check with database".

Declaration Database

| LensStructureVariable I =I LensDatabaseTableColumn

<
LensStructureType . <[LensDatamodel LensDatabaseTable
L —1
Runti
untime \ GUI

| LensApplicationModel |

LensObjectReqistry | | LensContainers |

LensGlobalDescriptor
EmbeddedDetailSpe
LensProxy L —
LonsSQLTransporter | LensSession | | LensAspectPath | [LinkedDetailspec |

7
connection
Y2

EXDI

ExternalDatabaseConnection '—' ExternalDatabaseSession

Fig. 1. Technical Architecture

The next module is the runtime engine. It defines the infrastructure, which is re-
quired for mapping objects to table rows and vice versa at runtime. It contains
classes for row containers, caching, proxies, and SQL queries. Furthermore, it de-
fines a lens session, which controls the access to the persistent objects. This module
supports a seamless integration of SQL queries into Smalltalk and reduces the im-
pedance mismatch ([8]).

The last module defines GUI widgets for viewing and editing persistent objects.
These widgets are integrated seamlessly into the GUI framework of VisualWorks.
Transient and persistent objects can therefore be represented in the same way. It de-
fines also aspect paths, which allow connections between the object aspects and the
visual components via the ValueModel-pattern ([2], [6], [13], [24]).

114 M. Prasse

The ObjectLens itself is based on the EXDI framework (external database inter-
face), which provides a low level access to database programming. The EXDI pro-
vides a set of abstract protocols to establish a connection to the database server, to
prepare and execute SQL queries, to obtain the results, and to disconnect from the
server. It supports also flat or non-nested database transactions with begin, commit,
and rollback.

The EXDI is an abstract framework. It provides the general implementation, but it
does not provide direct support for any particular database. Database Connect extensi-
ons are available to provide connectivity to specific databases. Our software enginee-
ring group uses database connections for Oracle, DB2, and PostgreSQL. The original
ObjectLens framework was build for Oracle and later Sybase. Today we use exten-
sions, which allow to support DB2 and PostgreSQL. Therefore, we can run our appli-
cations with different RDBMS without changing any code. The data models of DB2
and PostgreSQL are automatically generated from the data model specification of
Oracle. The current database is selected by a configuration file.

2.2 Conceptual Mapping from Classes to Tables

The conceptual mapping from classes to tables of the ObjectLens is described in
Table 1. The ObjectLens uses a simple mapping, which directly maps object-oriented
concepts to relational concepts. Classes, instance variables, and monomorphic object
references are mapped directly to tables and columns. 1:N and N:M relationships can
be modeled by auxiliary classes, which express the relationships or by explicit que-
ries, which select all objects that are connected to the object.

Unfortunately, the ObjectLens has only restricted support for inheritance and poly-
morphism. Each class is always unambiguously mapped to one table. You cannot map
several classes to one table. Therefore, you cannot map a class hierarchy to one table.
That means that you need several queries if you want to select objects of different
subclasses. Alternatively, you can replace inheritance by object composition but this
can lead to a complicated class design.

For example, you could use a class A for the queries, which has no subclasses. If
class A is used for queries, then only one query is needed to access all objects. The
class A has a reference to the root class B of a class hierarchy. This reference is
mapped by an untyped object reference so that objects of A can point to objects of
subclasses of B. The cost of this design is the separation of one domain entity in two
subparts.

Foreign key relationships can only be mapped for monomorphic instance vari-
ables. That means such a variable can only hold objects from one class. If you want to
use polymorphic variables, which can reference to objects from different classes, you
have to build untyped relationships. However, in this case you have to manage the
access itself.

2.3 Programming Metaphor

The ObjectLens uses explicit persistency. The metaphor of persistency of the Object-
Lens is the persistent container or collection. It uses no persistency by reachability,

Let’s Modularize the Data Model Specifications of the ObjectLens

115

Table 1. Object Relational Mapping of the ObjectLens

Mapping Concept Mapping
Support
calculus level @: object calculus — relational calculus
(static semantics)2
directly class level D 1eses: Classes — tables
Each class is unambiguously mapped to one
table. In one data model, no table can be mapped
to different classes. This restriction holds be-
cause the classID of objects is not stored in the
tables. Therefore, you cannot map inheritance or
polymorphism by storing objects of different
classes (subclasses) in the same table.
directly instance variable | ®;, cance variables: Variables — columns
level
instance variables |Instance variables with simple data types can be
with simple data | mapped directly to one column.
types
instance variables |Instance variables that hold object references
with monomorphic |map to a set of columns, which holds the pri-
object references | mary key of this object. This set of columns
(1:1 relationship) | realizes a foreign key relationship.
indirectly I:nand nmrela- |There is no direct representation. Additional
tionships tables in the database and select-statements of
the ObjectLens can implement these relati-
onships.’
no support |inheritance There is no direct representation. Each subclass
is mapped to its own table. Each table contains
all instance variables of the class including in-
herited variables.
no support [polymorphism Polymorphism for object references is not sup-

ported by the ObjectLens. We developed an
extension, which allows to support untyped ob-
ject references. For such references, the foreign
key consists of the pair (classID, objectID).

% For an introduction to relational databases and the relational calculus see [9] or [10]. For an
introduction to object calculi and object-oriented concepts see [1], [17] or [20].

? ObjectLens select-statements are Smalltalk statements, which are automatically transformed
in SQL queries by the ObjectLens.

116 M. Prasse

where all objects, which are reachable from a persistent root object are persistent, or
persistent classes, where all objects of the class are automatically persistent.

The ObjectLens is interpreted as a collection. To make an object persistent, it is
simply added to the lens session. To remove an object from the database, it is simple
removed from the lens session. The syntax is comparable to theirs of collections:

* to make an object persistent: aLensSession add: anObject
* to remove an object from the database: aLensSession remove: anObject

For all objects, which are included in the lens session, changes are automatically
detected. Each state change of such an object leads to an isDirty-registration. This
isDirty-mechanism is integrated in the setter methods of all instance variables by us-
ing the private method update:to: of the ObjectLens. Each state change using a setter
method is therefore detected. To reduce coding errors, the getter and setter methods
for instance variables can be automatically generated.

The ObjectLens supports flat transactions. Therefore, all updates, which occur in a
transaction, are written either together in the database (commit) or are rejected (roll-
back). Furthermore, you can use the ObjectLens without transactions. In this case
changes are immediately written into the database.

Database queries can also be written in Smalltalk. The syntax is comparable to the
method select of collections. The base for queries is the class LensQuery. Where-clau-
ses are expressed as block closures like in the collection methods do:, select: or de-
tect:. Figure 2 shows an example of a select-statement from our domain.

readEmployees: anEmployer in: anApplication
AanApplication
selectOnContainer: self container
whereBlock: [:each | each employer = anEmployer & each isCurrent]

Fig. 2. Select-statement in Smalltalk

The result list of a query is automatically transformed into corresponding objects.
Object references are expressed as lens proxies. If a proxy is accessed it is automati-
cally resolved by the corresponding object. An object cache ensures referential integ-
rity. All these mechanisms help to abstract from the relational persistent mechanism
and the database access in the ObjectLens. In most cases, Smalltalk syntax can be
used for persistent objects, which reduces the impedance mismatch.

The ObjectLens supports multiple lens sessions. An application can use several
lens sessions to access different databases simultaneously. However, the ObjectLens
has no multi-process ability. It is impossible to access one lens session from different
threads or processes. The implementation of the ObjectLens uses singletons for build-
ing the SQL-requests and is therefore not thread safe.

One further disadvantage is the bad performance by mass queries, if object refe-
rences are resolved by single queries. This is a typical trade-off of object references
and object navigation. Object navigation is fast, but a query over a set of such objects

Let’s Modularize the Data Model Specifications of the ObjectLens 117

needs additional queries for each object in the set. You can influence this by using
explicit select statements for mass queries.

2.4 Summary

The ObjectLens together with the EXDI framework and the specific Database
Connect extensions provides support for the most relevant aspects of building data-
base applications. This includes the declaration of the mappings, the creation and
adaptation of the database tables, the low level database access, the creation of user
interfaces for persistent objects and the runtime support with storing objects into the
database, retrieving objects from the database and querying the database, which
Smalltalk queries, which are translated into SQL.

The ObjectLens provides also a simple mapping from object-oriented concepts to
relational concepts. Inheritance and polymorphism are not directly supported. Ne-
vertheless, there are ways to achieve both.

In the most cases you can think about the ObjectLens as a persistent collection. To
make an object persistent, you add it. To remove an object from the database, you re-
move it from the Lens. To select an object from the database, you send a select state-
ment to the Lens. The technical aspects like transactions, proxies, posting updates,
and translating queries into SQL are done by the ObjectLens.

Summarizing, the ObjectLens is an object-oriented access layer to relational data-
bases. Its advantages are:

e aseamless integration in VisualWorks

e good support access by navigation and single queries

 the generation of the database scheme

* RDBMS-abstraction (Oracle, Sybase, DB2, ODBC, (PostgreSQL))

e GUI-support
* the support of multiple lens sessions
» graphical modeling tools for describing and generating data models

Its disadvantages are:

* only rudimentary support of inheritance and polymorphism
* bad performance by mass queries
* no multiprocessor ability

3 Data Model Specification

After introducing the ObjectLens let us look now at the data model specifications,
which describe the mapping for one application. In the next subsections, we describe
the structure of the dataModelSpec, the problems of maintenance and first solutions.

3.1 Conceptualization

The datamodelSpec is a declarative description of a lens data model. It is coded as a
literal array (LiteralArray). A literal array is an array of arrays of literals. It is recur-
sively defined. Literal arrays are widely used in VisualWorks. Its most prominent use

118 M. Prasse

in VisualWorks is the windowSpec of the GUI-Framework. All windows, which use
the VisualWorks framework, are declarative described by literal arrays. Another ex-
ample is the specification of diagrams by the Advance UML modeling tool of Visu-
alWorks, which uses ad2diagram methods ([6], [13]).

To encode a lens data model, you use the method literalArrayEncoding. To decode
a lens data model, you use the method fromLiteralArrayEncoding:.

e encoding: aLensDataModel literalArrayEncoding returns a literal array suitable
for reconstituting the receiver.

e decoding: LensDataModel fromLiteralArrayEncoding: anArray creates a lens
data model from the array encoding.

* LensDataModel fromLiteralArrayEncoding: (aLensDataModel literalArrayEn-
coding) returns a lens data model, which is equal to aLensDataModel.

If you apply the methods literalArrayEncoding and fromLiteralArrayEncoding: al-
ternately then you can switch between the data model level and the data model speci-
fication level. This means, that you can choose the language level for the specification
of the data model specifications.

Figure 3 shows the general structure of a literal array and of a dataModelSpec me-
thod. A literal array consists of two central parts: a class and a set of (aspect, value)
pairs. The class determines the kind of object, which the literal array describes. The
(aspect, value) pairs describe the state of the object. Usually the aspect is a method
selector and the value is the argument. The receiver of the object is the recently con-
structed object. In general, the construction process uses therefore a set of method
sends of the form ‘<object> <aspect> <value>’. The value itself can be encoded as a
literal array leading to nested encodings.

The general structure of a lens literal array is also described by Figure 3*. The first
aspect defines the database context. The second aspect describes the containing struc-
ture types. This is the most important aspect of the description because a lens data
model is mostly a set of structure types. The next two aspects describe policies. The
validity aspect determines the definition state of the data model.

The literal array of a lens structure type determines the class of the structure type,
the variables of the structure type and the table. The literal array of a lens structure va-
riable determines name, mapping, and column of the variable. The <value> for the as-
pect #structureTypes: is a collection of structure types and the <value> of the aspect
#setVariables: is a collection of structure variables.

Figure 4 shows the beginning of an existing dataModelSpec method, which is part
of our system. As shown in Figure 3 the structure types are described as literal arrays.
The definition database is an Oracle7Context with user name ‘lens’ and database
‘lensDB’. The example shows the beginning of the specification of the lens structure
type COLAdresse. A lens structure type itself consists of a set of lens structure varia-
bles. In the example, the definition for the variable ‘dependents’ is shown. This is an
unmapped (transient) variable. The datamodelSpec can specify persistent variables,
which are mapped, and transient variables, which are unmapped. Each lens structure

* The literal array is not described in all details. Only the most important aspects are shown.

Let’s Modularize the Data Model Specifications of the ObjectLens 119

literal array
M(<Class>
<aspect> <value> <aspect> <value> <aspect> <value> ...)

lens literal array
M (#{Lens.LensDataModel }
#setDatabaseContext: #(...)
#structureTypes: #(
#(#{Lens.LensStructureType }
#memberClass: <memberClass>
#setVariables: #(
#(#{Lens.LensStructureVariable }
#name: 'angelegtAm'
#column: <Database Column>
#privateIsMapped: true)
)
#table: <Database Table>)
)
#lensPolicyName: #Mixed
#lensTransactionPolicyName: #PessimisticRR
#validity: #installed)

Fig. 3. Structure of Literal Arrays and Lens Literal Arrays

type, which is used as a type of a lens structure variable, has to be defined in the data-
ModelSpec. This is a completeness constraint to the specification.

3.2 Maintenance Problems

The maintenance problems, which we identified by using the ObjectLens, can be
classified into two groups. The first group contains problems, which result from the
poor support of inheritance by the ObjectLens. In the second group are problems,
which result from the move to a product family with different datamodelSpecs. The
origin of both problem groups is redundancy.

3.2.1 Class Hierarchy Problems
The lens structure type of a class defines all instance variables of a class including in-
herited variables. This is necessary because the corresponding table has to store all
variables of the objects. Therefore, in each subclass of a class all instance variables of
that class have to be defined once again. There is no single source principle for the
specification of the mapping of instance variables.

These multiple definitions lead to some maintenance problems. If a new subclass is
added to a dataModelSpec using the lens data modeler, the mappings of the inherited

120 M. Prasse

dataModelSpec
"LensEditor new openOnClass: self andSelector: #dataModelSpec"
<resource: #dataModel>
A (#{Lens.LensDataModel }
#setDatabaseContext:
#(#{Oracle7Context}
#username: 'lens’
#environment: 'lensDB')
#structureTypes: #(
#(#{Lens.LensStructureType }
#memberClass: #{ COLAdresse }
#setVariables: #(
#(#{Lens.LensStructureVariable }
#name: 'dependents’
#setValueType: #Object
#generatesAccessor: false
#generatesMutator: false
#privateIsMapped: false) ...

Fig. 4. Example dataModelSpec

instance variables are not taken over. They have to be specified again, what is cum-
bersome and error prone. If a new variable is added to a superclass then all lens struc-
ture types of the subclasses have to be changed. The renaming of an instance variable
of a superclass requires analogous adaptations. The same instance variable can be
mapped variously to the database in different subclasses. In some situations, this
flexibility could be an advantage. More often, different mappings are unwanted and
only the result of missed adaptations. For example the property gender of a person is
mapped to {‘m’,’f’} in some subclasses and to a boolean in other subclasses of the
same data model.

The same situation occurs if the superclass of a class is changed. In this case all in-
stances variables of the old superclass have to be removed from the specification and
all instance variables of the new superclass have to be added with the correct map-
ping. Figure 5 shows an example. The superclass of the class AzzBeleg is changed
from ZEBeleg to BelegMitRechtskreis. The red-colored variables are changed. They
need therefore a new mapping. If you remember that this is information of the
superclass you understand that each change in the class hierarchy inflicts subclasses
directly.

3.2.2 Multiple DatamodelSpec Problems
One monolithic datamodelSpec is used to describe the data model of an application.
The data model has to contain all entity classes of the application. When we switched

Let’s Modularize the Data Model Specifications of the ObjectLens 121

TEE—— ~loix
Entity View Help #pData Modeler E 1 []
i o 5 Model Entity i Helj
ﬂ Application: Collphir. Atz. AtzMainApplication el HalD) SR kL
Data Model: datahodelAtzSpec Application Collphir. Atz AtzMaindpplication
Data Model dataModelSpecTmp
1856 > & dependents
= dependents =
sityebers B angelegtAm & angelegthnm
sitgeberBewsgung > = updateZaehler t- updateZaehler
kkanto> ™ bearbeiter » A
X B = ungueltigab
hungsperiode » &= ungueltigAb e ey
tenanschrift > ™ = referenziD
chagftsjahr >
tobewegung >
Urbeitgeberkonta > = quellklasse
Atz AtzAGKDntoauszug > P quellklasse el
= guellversion
= quellD = guelle
& quellversion
B gy
Collphir Atz AtzBalag = :ﬁf\/
COLMitarbeitar > e
B monat
= jahr
P gy & aufstockungshbetrag
Uiz AtzBeley siRY : E’““DE!”mﬂ:X_T_”Z
B bruttoEinmal
Atz AtzFaktura > T ALY = bruttaLaufendvoll
Utz AtzFakturaBeleg > & gvPll & hruttol aufendATZ
Atz AtzPersonenyertray > ™ tonat P pf:}“;‘
B hLL
Atz AtzSummengpeicher» & jahr A
Atz AtzZuordnung > > aufstockungshetrag & koL uft
84zAGPlan > & bruttoEinmalvall o SVSth'"I‘&mE
b rechiskreis
itbeiter> = bruttoEinmalATZ = korrekiurFlag
anisationsEinheit » B bruttoLaufendvoll t- Brzeugungstyp
o = bruttoLaufendATZ
> & piLut | o
.A 7
)

Fig. 5. Changing the Superclass

from one application to a product family, we had suddenly to deal with multiple data-
modelSpecs. Common shared core modules and domain specific modules characterize
the product family. If we start a new project for a customer in the domain context, we
often copy and paste an existing dataModelSpec of an old project. Then this data-
modelSpec is adapted to the new requirements.

Concerning the common core modules, all our dataModelSpec have overlapping
parts. So changing the mapping of a superclass in a core module results not only in
modifications of the subclasses in one datamodelSpec, but also in all the other data-
modelSpecs. Extending a core module by a new persistent class requires again modi-
fications to all datamodelSpec. If these changes are not maintained to all applications
then inconsistencies and different mappings may arise.

The origin of all these problems is the redundant specification of instance variable
mappings in subclasses and datamodelSpecs. There is no single source principle for
specifications of the ObjectLens.

122 M. Prasse

3.3 The DataModelMerger as a First Solution Approach

The main idea to resolve the maintenance problem is to reduce the redundancy. Our
first approach was to separate the datamodelSpec into different parts. We specified
complete datamodelSpecs of sub domains. These subdatamodelSpecs are comparable
to subcanvasSpecs of the GUI framework and are merged into one dataModelSpec by
a data model merger (Figure 6).

DataModelMerger new
mergeAll: (OrderedCollection new
add: self dataModelVifaSpec;
add: self dataModelAtzSpec;
add: self dataModelSVLuftSpec;
yourself)
ignore: #(#(#COLAZ03)
##COLAZRR)
#(#COLRueckzahlungssatz))

Fig. 6. Data Model Merger

The composition of the subdataModelSpecs is simple. All structure types of the
subdataModelSpecs are added to the aspect ‘structureTypes’ of the composed data-
ModelSpec (see Figure 3 for the base structure of a lens data model). If a structure
type is already included in the composed data model then another structure type of the
same memberClass is not added once again. In this way, a coarse-grained modulariza-
tion of the ObjectLens is achieved.

Nevertheless, this approach remains unsatisfactorily. At first, it solves not the class
hierarchy problems. At second, the domain subdataModelSpecs are still too extensive.
Each subdataModelSpec has to be complete with regard to all used lens structure
types. Therefore, there are common classes like Employee, Employer, or Person,
which are included in all subdataModelSpecs. At third, the subdataModelSpecs in-
cludes often classes, which are not needed. Some of these classes can be removed
from the data model by including these into the ignore set.

3.4 Summary

In conclusion, the dataModelSpec is a declarative description of a data model. It is
coded as a literal array. Unfortunately, the dataModelSpec is a monolithic definition,
which has only limited support for inheritance. Therefore, a number of problems oc-
cur during defining and maintaining such data model specifications. The origin of all
these problems is the redundant specification of instance variable mappings in sub-
classes and datamodelSpecs. This redundant definition leads to problems when adding
or changing variables of a superclass, when adding a new subclass or when changing
the superclass. Specification conflicts can occur if the same variable is mapped differ-
ently in different subclasses. The main idea to resolve these maintenance problems is
to reduce the redundancy.

Let’s Modularize the Data Model Specifications of the ObjectLens 123

4 Modularization of the ObjectLens

Up to now, we introduced the ObjectLens and described their relational database
mapping and associated disadvantages. Now we explain our approach to overcome
these problems in the following sections. At first, we describe the general ideas and
aims of the solution. Then we point out the definitions of the lens mapping for the
single domain classes. After that, we demonstrate the integration of the mappings of
the single domain classes into one data model of the lens application. Then we explain
the migration of our old data models into the modular data models. At the end, we
show the integration of our approach into the common database developer tools of
VisualWorks.

4.1 General Ideas and Goals

The general aspects of our solution are modularization and the use of inheritance. If
you remember, the lack of inheritance and the monolithic design of the data model
specifications of the ObjectLens are the origin of redundancy and the related prob-
lems. We decided to break up the monolithic specification in several pieces with each
piece describing the mapping of one class’. Furthermore, we use inheritance if we
want to describe the object relational mapping for one class. Therefore, only the parts
of a class without inherited variables have to be considered. The data model specifica-
tion of a lens application is defined by the data model specifications of the contained
set of classes. That means that the single class data specifications are the pieces from
which the whole data model specification is constructed. The result is a normal, but
generated monolithic data model specification of the ObjectLens. Therefore, we
changed only the definition and construction process of the data model specifications.

This approach gives us the desired advantages. We achieve a better adaptation, a
unification of the data representation of different applications in the product family
and the use of inheritance. In some way, we look at the datamodelSpec as one aspect
of the class and organize this aspect by the class itself. The modularization of the
datamodelSpec simplifies the maintenance efforts significantly. Instead of changing a
central monolithic definition, we change only the modular definitions of the con-
cerned classes.

Therefore, our solution consists of four parts. We store the mappings in the domain
classes. We construct automatically the datamodelSpec from these mapping frag-
ments. We support the common development tools. We support the migration of our
existing data model specifications.

4.2 Data Model Mappings of Classes

The data model specification of a class defines the corresponding lens structure type,
whereby definitions of inherited variables are obtained from the superclasses. The de-
finition of one class uses the definition of the superclass. Variables are described as
lens structure variables (remember Figure 3). The lens structure type of a single class
can easily be integrated in the aggregated data model specification.

> This approach is comparable to instVarMaps of GemStone. You can control instance variable
mappings between GemStone and your client Smalltalk by using these methods ([11]).

124 M. Prasse

dataModelDefinitionSpec
" You should not override this message. "
A self dataModelDefinition literalArrayEncoding

dataModelDefinition
" You should not override this message.
You can adapt primDataModelDefinition"

| type |
type := self primDataModelDefinition.

self primLocalDataModelDefinitionChanges: type.
type variables: (List withAll: type variables).
type resolveStandalone.

type

Fig. 7. Public Protocol for Class Data Model Definitions

Figure 7 shows the public protocol for defining the data models of a class. This
definition uses the template method pattern like the methods printString and prin-
tOn: ([2], [12]). The method dataModelDefinition provides an abstract implementa-
tion, which should be used by all classes. The method dataModelDefinition should
not be overridden. First, the method primDataModelDefinition is called, which pro-
vides the standard implementation. After that, the method primLocalDataModel-
DefinitionChanges: is called. This method gives each class the opportunity to over-
ride the inherited definitions. Whereas the method primDataModelDefinition will
usually be automatically generated, the method primLocalDataModelDefinition-
Changes is created by hand and describes changes, which should not be overridden
by further generation steps. The persistent classes of our product family are
subclasses of COLPersistentModel. Therefore, we define the template methods for
defining the lens structure types in this class in the method protocol ‘lens data
model specs’.

Figure 8 shows the basis hook method of the class COLPersistentModel and a fur-
ther example. It also displays the usual way in which a lens structure type is defined.
We use the LensMetaData classes directly. At first, we create an object of class Lens-
StructureType. After that, the member class and the table are set up. The other example
demonstrates the definition of structure variables of the persistent instance variables.
Here we use the literal encodings. The decision to use literal encodings for variables is
a pragmatic one. We want to simplify the migration process of our existing dataModel-
Specs and we want to use the facilities of the ObjectLens for generating lens encod-
ings. Variables with simple data types are directly included in the method. Instance
variables for object references (foreign key relationships) are defined in separate

Let’s Modularize the Data Model Specifications of the ObjectLens 125

COLPersistentModel>>primDataModelDefinition
"hook method"

| type |
type := LensStructureType new.

type memberClass: self.
type table: ((Oracle7Table new) name: self name; owner: 'COLBAV").
type idGeneratorType: #userDefinedld.

type

primDataModelDefinition

| type |
type := super primDataModelDefinition.

type variables add: #(#{Lens.LensStructureVariable} #name: 'name’
#setValueType: #String #fieldType: #String #column: #(#{Oracle7TableColumn}
#name: name' #dataType: 'varchar2' #maxColumnConstraint: 100)
#generatesAccessor: false #generatesMutator: false #privateIsMapped: true)
decodeAsLiteral Array.

self addSummenspeicherVariableln: type.

type idVariable: #('ungueltigAb' referenzID") .
type table name: 'kontoZuordnung' .

type

Fig. 8. Hook Method primDataModelDefinition

methods, because our objects use two-dimensional primary keys and therefore the
corresponding literal encodings are more complex. At the end, primary key and table
name are defined’.

Figure 9 shows an example for the hook method primLocalDataModelDefini-
tionChanges:, which can be used for adapting inherited properties. In the example, the
variable speicherBeleg gets a new type. On the database the variable speicherbeleg is
mapped as a foreign key relationship to the table of AtzSummenspeicherBeleg. This
allows the simulation of covariant instance variable redefinitions’.

The hook methods primDataModelDefinition and primLocalDataModelDefini-
tionChanges are used to define a lens structure type of a class. The template methods
dataModelDefinition and dataModelDefinitionSpec are the public interface. They are
used for integrating the class fragments into the whole data model specification.

® In general the primary key is taken from the superclass and the table name is set to the name
of the class.
7 For an explanation of the co- and contravariance issue of object-orientation see [1], [7], [20].

126 M. Prasse

primLocalDataModelDefinitionChanges:type
[var |
super primLocalDataModelDefinitionChanges:type.
(type variableNamed: 'speicherBeleg")
setValueType: #AtzSummenspeicherBeleg

Fig. 9. Hook Method primLocalDataModelDefinitionChanges

4.3 LensApplication datamodelSpec

Now we consider the application side. Like we showed above, the old data model spe-
cification describes the data models of the persistent classes of an application. There-
fore, we need to define the set of classes, which belong to the data model. This is
done by the class method dataModelClasses. The set has to include all classes, which
are referred in the data model (transient closure), otherwise the data model specifica-
tion cannot be created. We choose this decision to make the declaration explicit.
There are methods, which can calculate the transient closure of a set of classes so that
the resulting data model is complete.

The second step is the generation of the whole data model specification from the
data model classes. We describe this construction top down. The top method is the
method dataModelSpecGenerated (Figure 10). In this method, an object of Lens-
DataModel is created from the specifications of the data model classes. This is done
by the code fragment "self dataModelSpecForStructureTypeSpecs: self dataModel-
StructureTypeSpecs”. The method adaptDataModel is a further hook method, which
permits adaptations, which are only valid for this special application. In the last step,
the data model is compiled and the method returns the literal encoding of the data
model. This method is quite short in contrast to our old dataModelSpecs with more
than 15000 LOC of formatted code. These are 970 pages of formatted text or 250
pages of unformatted text without any line feed.

dataModelSpecGenerated
[1dm |
(Idm := LensDataModel new)
application: self;
fromLiteral ArrayEncoding: (self dataModelSpecForStructureTypeSpecs:
self dataModelStructureTypeSpecs).
self adaptDataModel: 1dm.
Idm compile.
Aldm literal ArrayEncoding

Fig. 10. LensMainApplication class >> dataModelSpecGenerated (Part 1)

Let’s Modularize the Data Model Specifications of the ObjectLens 127

Now we consider the method dataModelSpecForStructureTypeSpecs and its imple-
mentation (Figure 11). The method returns the data model specifications of the data
model classes. The method dataModelStructureTypeSpecsFor: shows the connection
to the data model specifications of the classes. For each class in the set of data model
classes the corresponding literal encoding is collected.

dataModelStructureTypeSpecs
A self dataModelStructureTypeSpecsFor: self dataModelClasses

dataModelStructureTypeSpecsFor: classColl
A (classColl collect:[:cl | cl dataModelDefinitionSpec]) asArray

Fig. 11. Methods dataModelStructureTypeSpecs and dataModelStructureTypeSpecsFor: (Part 2)

The last step concerns the implementation of the method dataModelSpecFor-
StructureTypeSpecs (Figure 12). The array of data model specification literal encod-
ings for the data model classes is inserted in the data model template. The method
dataModelTemplate provides the general template of the lens data model encoding
(see also Figure 3). The array of structure types is put at position 5.

These few methods describe the generation of the data model specification of the
application from the specification fragments of the data model classes. The two cen-
tral aspects are the determination of the set of data classes and the knowledge that for
the generation of the data model specification of the application only the specifica-
tions of the lens structure types have to be inserted.

dataModelSpecForStructureTypeSpecs: aColl
[res |
res := self dataModelTemplate copy.
res at: 5 put: aColl.
res

dataModelTemplate

M (#{Lens.LensDataModel }
#setDatabaseContext:
#(#{Oracle7Context} ...)
#structureTypes: #()
#lensPolicyName: #Mixed
#lensTransactionPolicyName: #PessimisticRR
#validity: #installed)

Fig. 12. Methods dataModelSpecForStructureTypeSpecs: and dataModelTemplate (Part 3)

128 M. Prasse

£ Data Modeler & I:I|1|
X| model Entity View Help

Bitte: waklen Sie die Flassen aus, fir die das LOM erstellt werden soll Refersnce | Applcation COLPHIRMaindpplication

Arbeitgeberversorgungswerk { Collphir Oebav..» Data hodel. databodelSpecTmp
ArbeitgeberZuwendungssatz (Collphir Ukdgb & :
AtzAGKontoauszug {Collphir Atz AzAGKontoa Collphir.Atz.AtzBeleg »
AZAGPIan (Colphir AZAGPIan) el s R
| AzAGPIanMitMeidung (Colohir AZAGPlaniith gg}:pE::i:jgg';:'ir“”gss”ategy”
W AlzBeleq (Colphir Az AtzBeleq) : CDHEhir.ZWkCOLArbeitgeber>
AzFaktura (Collphir Az AzFakiura) ;

:) : Callphir. 2wk, COLYersargungstall >
AfzSicherungsstrategy (Collphir Az AzSicher COLMitarbeiter »

COLTarif =
Alle selektiersn Ahbruch
Selektion aufheben 0K |

LensMainApplication
openLensEditorFor: CollphirMainApplication
with: (Set new add: AtzBeleg; yourself)

Fig. 13. LensEditor for Class Data Models

4.4 Integration Into the Lens Modeling Tools

Now, the integration into the lens modeling tools is explained. One of our goals was
to support the lens modeling tools so that each developer can use these tools in the
usual way. Otherwise, the acceptance of the new approach would only be low®.

The first tool, which we want to support, is the lens editor. The lens editor shows
the classes of a data model. Therefore, we provide an opportunity to generate a lens
data model for a single class or a set of classes. This is shown in Figure 13. We ex-
tend the lens editor by a further selection dialog, which allows the selection of data
classes. The method openlLensEditorFor:with: is called for the set of selected classes.
In the example, only class A#zBeleg is chosen. The method openLensEditorFor:with:
calculates all classes, which are needed to construct a complete data model. There-
fore, the data model contains not only class AzzBeleg but also further classes, which
are referred to by ArzBeleg. The so generated data model can be manipulated in the
same way as the old data models.

Secondly, we support the mapping tool. The mapping tool allows the definition of
the mapping between variable and column. In the mapping tool only a single class is consid-
ered (Figure 14). Therefore, the mapping tool is the suitable place for creating the class data
model. We integrated a new menu item 'Generate Lens Mapping for Class...", which opens a
multi-selection dialog for the class and its superclasses. The DataModelDefinitionGenerator
generates the method primDataModelDefinition for the selected classes. Remember, the
method primLocalDataModelDefinitionChanges is not generated.

¥ The development of new lens tools was beyond the scope of our solution.

Let’s Modularize the Data Model Specifications of the ObjectLens

129

& Mapping Tool N =10l x|
Entity Varisble Table View Help
Variable Column
Type: String - Type: warchar2 oS
Mat Nil Length: 100 Mot Hul
dependents
gele! ngelegtim OLBAW AtzSicherungsstrate gy
updateZaehl pdateZaehler>
- ungueltighb <hearbeiteryS>
. SR = referenz|D <hbearheiterlD>
Collphir.Atz AtzSicherungsstrated; - ungueltigAb Lellicab>
= referenziD: 121D i
[}
regeln
x
Bitte wihlen Sie die Klassen fiir die Generierung
AbstraktesPersistenteshodell (Collphir Abstrak T
¥ AtzSicherungsstrategy (Collphir Atz AtzSichen DataModelDefinitionGenerator new
¥ LazvReferenzierbaresiiodel (Calphi Lazyre! generateLensSpecsFrom: self ldm
o for: selectedClasses
odell (COLModell) .
Object
[T

Fig. 14. Lens Mapping Tool for Class Data Models

4.5 DataModelDefinitionGenerator

The class DataModelDefinitionGenerator is responsible for the generation of data model
fragments. We use the DataModelDefinitionGenerator for migration of old monolithic

dataModelSpecs as well as for generating class data models in the mapping tool.

The major steps of the migration process are described in Figure 15. The Data-
ModelDefinitionGenerator can transform a set of data models into a nested dictionary
structure. This structure is described by the transformation function 7. The semantic

domains are named after their corresponding classes:

T: IP(LensDataModel) — Dictionary[Class, Dictionary[Symbol, Collection]]

with:

- IP(X) is the power set of X with: IP(X) =4 {S: § < X}

- aDictionary =4 {key ; = value ; : i = 1..n}

- T({aLensDataModel ;: i = 1.. n}) =4 {cl — aDictionary . :
FkIs(s<;cla

LensStructureType, € aLensDataModel, Ak €{1, ..,n})}

- aDictionary, =4 {#type — Set[LensStructureType],

#variables — aDictionary . variapies/

° There exists a number k and a subclass s with the following property: The class s is a sub-
class of ¢l and a LensStructureType for class s is a member of the LensDatamodel with num-

ber k.

130 M. Prasse

- aDictionary o, variables =ar {Symbol — Set[LensStructureVariable]:
symbol is a name of an instance variable, which is defined in the class cl}

For each class the structure of dictionaries collects a set of corresponding lens
structure types and for each instance variable a set of corresponding lens structure
variables. Furthermore, the dictionary structure includes all superclasses and their
instance variables. The cardinality of the set of lens structure types and of the set of
lens structure variables counts the number of definitions and is a measure of the de-
gree of redundancy. The transformation 7 collects all definitions for a single mapping
and merges all considered data models into one single structure.

D). transformation T
generator := DataModelDefinitionGenerator new
add: AtzMainApplication dataSpec: #dataModelSpec;
add: ZwkMainApplication dataSpec: #dataModelSpec;
yourself.

II). conflict reports
generator report

III). data model classes
generator
generateDataModelClassesFor: AtzMainApplication
dataSpec: #dataModelSpec .

IV). generating of all classes
generator generate

generating of a subset of classes
generator
generateLensSpecsFrom: Idm
for: (Set new add: Rente; add: COLAZ03; add: COLAZRR; yourself)

Fig. 15. Migration Process

Figure 16 illustrates the transformation and shows a simplified object view of
transformation 7'°. The dictionaries cluster and order the information hierarchical.
The hierarchy-levels are determined by the structure of a lens data model. The essen-
tial information is in the leaves of this tree. The class is associated with its lens struc-
ture types. Each instance variable is associated with its lens structure variables. These
lens structure variables are collected from all subclasses of the class, which occur in
the data models.

' We use a simplified notation that is inspired by the object diagrams of UML ([21]).

Let’s Modularize the Data Model Specifications of the ObjectLens 131

aLensDataModel

transformed

RN
aDictionary of class transformations

includes
b\

aDictionary for one class

transformation

#type #variables
A
aSet of LensStructureTypes aDictionary of instance variable

transformations
T

includes

y

variable -> aSet of LensStructureVariables

Fig. 16. Simplified Object View of Transformation T

In the following step, we calculated the conflicts between the different definitions
of an entity. Here, conflicts during the migration process were handled by a two-step
strategy. At first, we eliminated trivial conflict cases and tried to resolve as much con-
flicts as possible. For example, if different max column constraints occur, then we
chose often the weakest one. Then we used pair reviews and decided, which mapping
should become the standard. In a second step, we supported different mappings by
using the methods primLocalDataModelDefinitionChanges and adaptDataModel,
which allows overriding already generated properties.

After that, we generate the code in two steps. First, we generate the method data-
ModelClasses for the application. Then we generate the primDataModelDefinition
method from the corresponding dictionary .. The method primDataModelDefinition
is an aggregation of all lens structure variables of the instance variables, which are
defined in this class. Therefore, the method includes literal encodings for each self-
defined instance variable. Simple data mappings are inlined. Complicated mappings
for foreign key relationships are extracted in separate methods.

For the code generation itself we use common Smalltalk techniques. We defined
methods for invariant code fragments and methods, which provides a string represen-
tation for related parts of the mapping like table name, primary key, or variables.
Then we used a stream to merge this fragments. The result is the source string of a
Smalltalk method that we compiled in the metaclass of the considered class in the
protocol ‘lens data model specs’.

132 M. Prasse

4.6 Summary

The general aspects of our solution are modularization and the use of inheritance. The
modularization of the ObjectLens was a four-step process. Firstly, we defined the
structure of the specifications of the single data classes. Each data class got a descrip-
tion for its lens structure type. Secondly, we defined the generation of the data model
specification of the application. The data model specification of an application is the
sum of the data model specifications of a set of classes. Thirdly, we defined a migra-
tion process, which translates the old data model specifications into the new structure.
The generation process was mostly automatic. Conflict handling was semi-automatic
and uses pair reviews. At the end, we integrated the new procedure for defining data
models into the modeling tools of the ObjectLens.

5 Conclusion

In this paper, we described an approach to replace the huge monolithic data model
specification of the ObjectLens by modular data model specifications and generated
data models. In connection with a product line strategy, the old monolithic OR-
mapping design leads to a high degree of redundancy, which complicates develop-
ment and maintenance.

The main idea of our solution is to describe the mappings of each class in the class
itself using inheritance and generate the whole specification from a list of single class
data models. In this way, declarative and generative programming techniques are
combined.

After some months of productive use, we can claim that we achieved our goals.
The proposed solution works well. We migrated all old data model specifications of
all our applications to the new procedure. The integration of different domain mod-
ules is simplified. Often, only the method dataModelClasses needs to be adapted. The
class data model specifications lead to uniform specifications with lower definition
conflicts. The creation and maintenance of the small class data definitions is much
easier then the old copy&paste approach. Furthermore, the support of inheritance
leads to a ’single point of definition’ approach and reduces redundancy extremely.
Refactoring or extending class hierarchies is much easier now.

On the implementation stage, we decided to reuse as much as possible from the Ob-
jectLens. Therefore, the data model mappings of the classes use the same lens literal
encoding like the original specifications. The class DataModelDefinitionGenerator,
which we used at first for the migration process, was also suitable for the generation of
the primDataModelDefinition methods by the mapping tool. The initial primData-
ModelDefinition methods were generated from the old existing dataModelSpecs.

On the tools stage, the lens modeling tools were extended to support class data mo-
dels. The extended lens editor provides support for editing lens data models, which
are constructed from a set of classes. The extended mapping tool supports the genera-
tion of the method primDataModelDefinition, which is the central part of the defini-
tion of the lens structure type of a class.

Let’s Modularize the Data Model Specifications of the ObjectLens 133

References

(1]
[2]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]

[23]

[24]

Abadi, M.; Cardelli, L.: "A Theory of Objects" Springer. New York. 1996.
Alpert, S. R.; Brown, K.; Woolf, B.: "The Design Patterns Smalltalk Companion" Addi-
son-Wesley. Reading (Massachusetts). 1998.

] Bauer, C.; King, G.: "Hibernate in Action" Manning. Greenwich. 2004.

Brown, K.; Whitenack, B.: "Crossing Chasms for Object-Relational Integration" in:
"Proceedings of the 3rd Conference on the Pattern Languages of Programs" 1996.
Cincom Systems: "VisualWorks: Version 7.2.1, Database Application Developer's
Guide". Cincom Systems. 2003. www.cincom.com/smalltalk

Cincom Systems: "VisualWorks: Version 7.2.1, Application Developer's Guide". Cincom
Systems. 2003. www.cincom.com/smalltalk

Cook, W.; Hill, W.; Canning, P.: "Inheritance Is Not Subtyping" in: "POPL 1990" pp.
125-135.

Copeland, G.; Maier, D.: "Making Smalltalk a Database System" in: "SIGMOD Record"
Volume 14. Issue 2. 1984. pp. 316-325.

Date, C. J.: "An Introduction to Database Systems" Volume 1. Addison-Wesley. Reading
(Massachusetts). 6. Edition. 1995.

Elmasari, R.; Navathe, S.: "Fundamentals of Database Systems" Cummings Publishing.
Redwood City. 1989.

GemsStone Systems: "GemStone Documentation: Version 5.0" GemStone Systems, Inc.
Juli 1996.

Gamma, E.; Helm, R.; Johnson, R. E.; Vlissides, J.: "Design Patterns CD: Elements of
Reusable Object-Oriented Software" Addison-Wesley. 1998.

Howard, T.: "The Smalltalk Developer’s Guide to VisualWorks" SIGS. New York. 1995.
IBL Ingenieurbiiro Letters GmbH: "Polar(R) : Ein Werkzeug zur Abbildung objektorienti-
erter Strukturen auf relationale Datenbanken (Produktprisentation)" in: "Tagungsband
STJA '98: Smalltalk und Java in Industrie und Ausbildung" 1998.

Keller, W.; Coldewey, J.: "A Design Cookbook for Business Information Systems" sd&m
report. 1996.

Knight, A.: "Tutorial Using Glorp" in: "Proccedings of Smalltalk Solutions' 2004" 2004.
www.glorp.org

Meyer, B.: "Object-oriented Software Construction” 2. Edition. Prentice Hall. 1997.
MicroDoc GmbH: "MicroDoc Persistence Frameworks fiir Smalltalk und Java: (Produk-
tprasentation)" in: "Tagungsband STJA '98: Smalltalk und Java in Industrie und Ausbil-
dung" 1998.

ParcPlace Systems: "VisualWorks: Version 2.0". Cincom Systems. 2003.

Prasse, M.: "Entwicklung und Formalisierung eines objektorientierten Sprachmodells als
Grundlage fiir MEMO-OML" Folbach. Koblenz. 2002.

Rumbaugh, J.; Jacobson, I.; Booch, G.: "The Unified Modeling Language Reference
Manual" Addison-Wesley. 1999.

Roos, R. M.: "Java Data Objects" Addison-Wesley. Boston. 2003.

The Object People GmbH: "TOPLink: Persistenzframework fiir Smalltalk und Java (Pro-
duktprdsentation)" in: "Tagungsband STJA '98: Smalltalk und Java in Industrie und Aus-
bildung" 1998.

Woolf, B.: "Understanding and Using ValueModels" Whitepaper. Knowledge Systems
Corporation. 1994.

Meta-driven Browsers*

Alexandre Bergel!, Stéphane Ducasse?, Colin Putney®, and Roel Wuyts*

1 DSG, Trinity College Dublin, Ireland
Alexandre.Bergel@cs.tcd.ie
2 LISTIC University of Savoie, France & University of Bern, Switzerland
stephane.ducasseQuniv-savoie.fr
3 Wiresong, Canada

cputney@wiresong.ca

4 Université Libre de Bruxelles, Belgium
Roel.Wuyts@ulb.ac.be

Abstract. Smalltalk is not only an object-oriented programming lan-
guage; it is also known for its extensive integrated development envi-
ronment supporting interactive and dynamic programming. While the
default tools are adequate for browsing the code and developing ap-
plications, it is often cumbersome to extend the environment to sup-
port new language constructs or to build additional tools supporting
new ways of navigating and presenting source code. In this paper, we
present the OmniBrowser, a browser framework that supports the defi-
nition of browsers based on an explicit metamodel. With OmniBrowser
a domain model is described in a graph and the navigation in this graph
is specified in its associated metagraph. We present how new browsers
are built from predefined parts and how new tools are easily described.
The browser framework is implemented in the Squeak Smalltalk environ-
ment. This paper shows several concrete instantiations of the framework:
a remake of the ubiquitous Smalltalk System Browser, and a coverage
browser.

Keywords: Tools, MetaModeling, Ul, Browsers, Squeak.

1 Introduction

Smalltalk is an object-oriented language featuring a complete development envi-
ronment supporting interactive and dynamic programming [GR83,[Gol84]. While
the default environment already supports advanced ways of navigating source
code and fluid development since the eighties, new browsers have been devel-

oped over the years: the Refactoring Browser RBJO96, RBJIT] which

was the first system browser supporting refactoring, the StarBrowser [WD04!

* We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation Recast (SNF 2000-061655.00/1), the Cook ANR french projects and the Sci-
ence Foundation Ireland and Lero - the Irish Software Engineering Research Centre.

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 134 2007.
© Springer-Verlag Berlin Heidelberg 2007

Meta-driven Browsers 135

which supports smart groups, a browser for incremental development support-
ing visual feedback of undefined methods and the Whiskers browser that
shows multiple methods at the same time maximizing the screen space. Strong-
Talk, a more exotic Smalltalk version featuring optional typing, offered a glyph
based browsing environment.

The problem when building all of these browsers is that they are always rebuilt
from scratch because there hardly exists any domain models or frameworks for
building such development tools. In fact, the current browsers in most Smalltalk
environments are hard to extend for two reasons: (a) they are monolythic appli-
cations that are not really meant to be included elsewhere, and (b) the navigation
and interaction of the end-user with the browsers is typically hardcoded in the
browser Ul elements, and is therefore hard to change or extend.

Note that some Smalltalk environments allow one to embed applications
within each-other. VisualWorks for example has a notion of subcanvases which
can be used to that end. This helps to reduce the problem (a) in the previous
paragraph, but not problem (b) of the hardcoding of the the navigation and in-
teraction in the browser Ul elements. Other browsers are designed with a certain
amount of customizability in mind, and are therefore easier to extend, but even
those lack explicit descriptions of the navigation.

As was already reported by Steyaert et al. [SLMD96], we conclude that cur-
rent visual application builders and application frameworks do not live up to
their expectations of rapid application development or non-programming-expert
application development. They fall short when compared to component-oriented
development environments in which applications are built with components that
have a strong affinity with the problem domain (i.e., being domain-specific).

In this paper we present OmniBrowser, a framework to define and compose
new browsers. In OmniBrowser framework, a browser is a graphical list-oriented
tool to navigate and edit an arbitrary domain. The most common representative
of this category of tools is the Smalltalk system browser, which is used to nav-
igate and edit Smalltalk source code. In OmniBrowser framework, a browser is
described by a domain model and a metagraph which specifies how the domain
space is navigated through. Widgets such as list menus and text panels are used
to display information gathered from a particular path in the metagraph. Al-
though widgets are programmatically composed, the OmniBrowser framework
framework supports their interaction.

The contributions of this article are: the description of a metadriven frame-
work to build system browsers and the application of the framework to build
some tools. In Section 2] we describe difficulties and challenges to define states
and flow between those states for a graphical user interface. In Section [3] we
present the key entities of OmniBrowser framework. In Section] we present
the OmniBrowser-based system browser and in Section Bl we describe the cover-
age code browser. In Section [f] we discuss about properties of the OmniBrowser
framework. In Section [[] we provide an overview of related work. In Section [§ we
conclude by summarizing the presented work.

136 A. Bergel et al.

2 Defining and Maintaining the State of a Graphical
User Interface

In this section we stress some of the problems encountered when building com-
plex tools such as an advanced code editor.

The state of a graphical user interface (GUI) is defined as a collection of the
states of the widgets making up the interface. The state of a widget refers to the
state the widget is in. It is modified whenever an end-user performs an action on
this widget such as clicking a button or selecting an entry in a menu. Therefore,
a GUI has a high number of different states. Asserting the validity for each of
these states is crucial to avoid broken or inconsistent interfaces.

Given the potential high number of different states of a GUI, asserting the
validity of a GUI is a challenging task. Let’s illustrate this situation with the
Smalltalk system browser, a graphical tool to edit and navigate into Smalltalk
source code.

[E]

Fig. 1. The traditional Smalltalk System Browser roughly depicted

Figure [1l depicts the different widgets of a traditional Smalltalk class system
browser (see Figure [1 for a real picture). Without entering into details, A, B,
C and D are lists that show class categories (groups of classes), classes, method
protocols (groups of methods) and methods. E is a radio button composed of
three choices and F is a text pane.

Pane A lists the categories in the system. Selecting a category in this list,
makes the classes in that category appear in pane B. Selecting a class results
in the protocols for that class being shown in pane C, and selecting a protocol
lists the method names in pane D. Switch E controls whether the class or the
metaclass is being edited, and therefore whether the protocols and methods
shown are instance level or class level methods. Pane F is a text pane that gives
feedback on whatever is selected in the top panes, always displaying the most
specific information possible. For example, when a user has selected a method
in a protocol in a class in a certain category, pane F shows the definition of that
method (and not the definition of the class of that method).

The description of how the browser works shows a number of navigation in-
variants that need to be kept when implementing the browser. For example, the
selections goes from left to right: it is not possible to have methods listed in pane
E with pane D being empty.

Invariants such as the one given above need to be implemented and checked
when building a browser. So we are dealing with writing an application that deals

Meta-driven Browsers 137

with a potentially very big number of states in which only certain transitions
between states need to be allowed (the ones that correspond to navigations the
user of the browser is allowed to do). Whenever a user clicks on widgets that
make up the GUI of the browser, the state of one or more widgets is changed, and
possibly new navigation possibilities are open up (being able to select a method
name, for example) while other ones will no longer be possible (not being able
to select a method name when no protocol is selected). To deal with the fact
that a widget can be in an inconsistent state, developers often rely on guards:
the method performing an action in reaction of an user action always checks
whether the state is actually correct or not nil.

In addition the state management is often spread over the Ul elements. This
leads to code with complex logic (and often bogus). In addition it makes tool
elements difficult to extend and reuse in different context.

The problem when building a browser is in representing the mapping from
the intended navigation model to the domain model and widgets. Even though
graphical framework like MVC [Ree79, [Ree| and Coral [SM8S] offer ways to mod-
ularize the model and the graphical user interface, they do not provide means (i)
to preserve consistency of the interface by restricting unexpected state transition
to happen and (ii) to keep the widgets synchronized with each other [KP8S].

In the next section, we describe a new framework to design browsers where the
domain model is distinct from the navigation space. This latter being described
by a metagraph. The state of a browser is defined by a path in this metagraph.

3 Defining a Browser: A Graph and a Metagraph

The domain of the OmniBrowser framework is browsers, applications with a
graphical user interface that are used to navigate a graph of domain elements.
When instantiating the OmniBrowser framework to create a browser for a par-
ticular domain, the domain elements need to be specified, as well as the desired
navigation paths between them.

The OmniBrowser framework is structured around (i) an explicit domain
model and (ii) a metagraph, a state machine, that specifies the navigation in
and interaction with the domain model. The user interface is constructed by the
framework, and uses a layout similar to the Smalltalk System Browser, with two
horizontal parts. The top part is a column-based section where the navigation
is done. The bottom half is a text pane.

Section 3.1l explains the major classes that make up the OmniBrowser frame-
work. Section[B2lshows a concrete instantiation to build a file browser. Section 3.3
goes in some more detail and describes the core behavior of the framework.
Section 3.4l explains how the widgets are glued together.

3.1 Overview of the OmniBrowser Framework

The major classes that make up the OmniBrowser framework are presented in
Figure 2l and explained briefly in the rest of this section.

138 A. Bergel et al.
Omnibrowser core framework
Eilt MetaNode
fter displaySelector
filterCl
nodesForParent: LEOIEES gg;lg;:t- o defaultMetaNode
selectAncestorOf:withParent: dld A t.p')
wantsButton addnctor: .
A displaySelector:
ModalFilter actors metaNode defaultRootNode
Browser class
Actor Definition Node Browser
dispatcher < defaultMetaNode
actionsForNode: accept:notifying: |H name panels " | defaultRootNode
actionsForParent: text text open
text: definition title

Fig. 2. Core of the OmniBrowser framework

Browser. A browser is a graphical tool to navigate and edit a domain space.
This domain has to be described in terms of a directed cyclic graph (DCG). It is
cyclic because for example file systems or structural meta models of programming
language (i.e., packages, classes, methods...) contain cycles, and we need to be
able to model those. The domain graph has to have an entry point, its root. The
path from this root to a particular node corresponds to a state of the browser is
defined by a particular combination of user actions (such as menu selections or
button presses). The navigation of this domain graph is specified in a metagraph,
a state machine describing the states and their possible transitions.

Node. A node is a wrapper for a domain object, and has two responsibilities:
rendering the domain object, and returning domain nodes. Note that how the
domain graph can be navigated is implemented in the metagraph.

Metagraph. A browser’s metagraph defines the way in which the user may tra-
verse the graph of domain objects. A metagraph is composed of metanodes and
metaedges. A metanode references a filter (described below) and a set of actors.
The metanode does not have the knowledge of the domain nodes, however each
node is associated to a metanode. Transitions between metanodes are defined
by metaedges. When a metaedge is traversed (i.e., result of pressing a button or
selecting an entry list), siblings nodes are created from a given node by invoking
a method that has the name of the metaedge.

Actor. An actor is a basic unit of domain-related functionality. Actors are
attached to metanodes, and supply the actions used to interact with objects
wrapped by nodes. For instance, actors are used to build context menus and
buttons in the browser.

Action. An Action represents a Command [ABWO9§| for manipulating, inter-
acting and navigating with the graph domain. Actions can be made available
through menus or buttons in the browser. They carry information on how they

Meta-driven Browsers 139

should be presented to the user and are responsible for handling exceptions that
can occur when they are triggered. Actions are created by actors.

Filter. The metagraph describes a state machine. When the browser is in a state
where there are two transitions available. The user is the one that decides which
transition to follow. To allow that to happen OmniBrowser framework displays
the possibilities to the user. From all the possible transitions, OmniBrowser
framework fetches all the nodes that represent the states the user could arrive
at by following those transitions and list them in the next column. Note that
the transition is not actually make yet, and the definition pane is still displaying
the class definition. Once a click is made, the transition actually happens, the
pane definition is updated (and perhaps other panes such as button bars) and
it gathers the next round of possible transitions.

A filter provides a strategy for filtering out some of the nodes from the display.
If a node is the starting point of several edges, a filter is needed to filter out all
but one edges to determine which path has to be taken in the metagraph.

Definition. While navigating in the domain space, information about the se-
lected node is displayed in a dedicated textual panel. If edition is expected by
the browser user, then a definition is necessary to handle commitment (i.e., an
accept in the Smalltalk terminology). A definition is produced by a node.

3.2 A Simple Example: A File Browser

To illustrate how the OmniBrowser framework is instantiated, we describe the
implementation of a simple file browser supporting the navigation in directories
and files [Hal05].

Figure [shows the file browser in action. A browser is opened by evaluat-
ing FileBrowser open in a workspace. The navigation columns in the case of a
file browser are used to navigate through directories, where every column lists
the contents of the directory selected in its left column, similar to the Column
View of the Finder in the Mac OS-X operating system. Note that we can have
an infinite numbers of pane navigating through the file system. The horizontal
scrollbar lets the user browse the directory structure. A text panel below the
columns displays additional properties of the currently selected directory or file
and provides means to manipulate these properties.

Node definitions. Nodes wrap objects of the browsed domain. First the class
FileNode a subclass of Node is created which represents a file. A file node is
identified by a full path name, stored in a variable. The name of the node is
simply the name of the file selected:

FileNode>>name
" (FileDirectory directoryEntryFor: path) name.

A text containing information about the selected file is returned by the method
text:

140 A. Bergel et al.

FileNode>>text
"~ "First 1000 characters: ', String cr,
((FileStream readOnlyFileNamed: path) converter: LatinlTextConverter new;
next: 1000) asString

A directory node is a kind of file that contains directories and files. The
methods files and directories are defined on the class DirectoryNode.

DirectoryNode>directories
| dir |
dir := FileDirectory on: path.
" dir directoryNames collect: [:each |
DirectoryNode new path: (dir fullNameFor: each)]

DirectoryNode>files
| dir |
dir := FileDirectory on: path.
" dir fileNames collect: [:each |
FileNode new path: (dir fullNameFor: each)]

The implementation shows the two responsibilities of a node: rendering itself
(implemented in the text method), and calculating the nodes reachable from a
node (in the directories and files methods).

% B File Browser (o]
bergel * emacs.d ® Squeak * Squeak 3.8.12betalU.ag™
Shared Algo 4 .DS_Store 4 Squeak3.9a-7022 A
Jocalized .ssh Jocalized Squeak3.9a-7025

Trash alexandre.rar Squeak3.9a-7029

aspectjl.5 apr06, pdf Squeak3.9a-7032

bin AutomataViaMacros.pd:— .DS_Store

CodeDeLaRoute Backpack sources

Desktop backup.txt CE].zip

Documents CS5-98-34.ps.Z.ps Scheme.cs

iTunes DAPD49.fdf SqueakV3.sources

v Litrary v Desktop v v

] »
First 1000 characters: :

‘From Squeak3.0 of 4 February 2001 [latest update: *3414] on 4 February 2001 at 1:28:53 am'!
SoundCodec subclass: * ADPCMCodec

instanceVariableNames: 'predicted index deltaSignMask deltaValueMask deltaValueHighBit
frameSizeMask currentByte bitPosition bytelndex encodedBytes samples rightSamples samplelndex
bitsPerSample stepSizeTable indexTable *

classVariableNames: "'

poolDictionaries: '

category: '‘Sound-Synthesis'!
IADPCMCodec commentStamp: ‘<historicals’ prior: 0!
This is a simple ADPCM {adapative delta pulse code modulation) codec. This is a general audio
codec that compresses speech, music, or sound effects equally well, and works at any sampling
rate (i.e., it contains no frequency-sensitive filters), It compresses 16-bit sample data down to 5,
4, 3, or 2 bits per sample, with lower fidelity and increased noise at the lowest bit rates,
Although it does not deliver state-of-the-art compressions, the alorithm is small, simple, and v

Fig. 3. A minimal file browser based on OmniBrowser

Meta-driven Browsers 141

Action Definitions. The user can perform some actions on selected files. Those
are implemented in the class FileActor which inherits from Actor. Action are
commands with user-interface information such as icon.

FileActor>>actionsForNode: aNode
~ {OBAction
label: 'remove’
receiver: self
selector: #removeFile:
arguments: {aNode}
keystroke: $x

icon: Menulcons smallCancellcon.

OBAction
label: 'rename’
receiver: self
selector: #renameFile:
arguments: {aNode}}

FileActor>>removeFile: aNode

"Remove the file designed by aNode”

FileActor>>renameFile: aNode
"Rename the file designed by aNode”

object node

metanode

root metanode ot AN

is an ancestor of

FCEE

transition temp pic1.jpg

pic2.jpg pic3.jpg

(a) Instantiated domain

#directories
Directory

#files

|

(b) Metagraph

Fig. 4. A filesystem (as a graph) (a) and its corresponding metagraph (b)

Metagraph Definition. Figure d] shows a metagraph describing a filesystem.
Two metanodes, Directory and File, compose this metagraph. The navigation
between these nodes is defined by two transitions, files and directories. The
starting point in a metagraph is designated by a root metanode.

142 A. Bergel et al.

The metagraph is implemented in the class FileBrowser. The methods default-
MetaNode and defaultRootNode are defined on the class side of FileBrowser.
These methods define the metagraph and gives the root node, respectively:

FileBrowser class>>defaultMetaNode
"returns the directory metanode that acts as the root metanode”

| directory file |
directory := OBMetaNode named: 'Directory’.

file := OBMetaNode named: 'File'.
file addActor: FileActor new.

directory
childAt: #directories put: directory;
childAt: #files put: file;
addActor: FileActor new.

" directory

FileBrowser class>>defaultRootNode
" DirectoryNode new path: '/’

When one of the two #directories and #files metaedges is traversed, the name
of this metaedge is used as a message name sent to the metanode’s node.

3.3 Core Behavior of the Framework

The core of the OmniBrowser framework is composed of 8 classes (Figure [2).
We denote the Smalltalk metaclass hierarchy by a dashed arrow.

The metaclass of the class Browser is Browser class. It defines two abstract
methods defaultMetaNode and defaultRootNode. These methods are abstract,
they therefore need to be overridden in subclasses. These methods are called
when a browser is instantiated. The methods defaultMetaNode and default-
RootNode returns the root metanode and the root domain node, respectively.
A browser is opened by sending the message open to an instance of the class
Browser.

The navigation graph is built with instances of the class MetaNode. Transitions
are built by sending messages childAt: selector put: metanode to a MetaNode
instance. These has the effect to create a metaedge named selector leading away
the metanode receiver of the message and metanode.

At runtime, the graph traversal is triggered by user actions (e.g., pressing a
button or selecting a list entry) which sends the metaedge’s name to the node
that is currently selected. Actors are attached to a metanode using the method
addActor:. The rendering of a node is performed by invoking on the domain node
the selector stored in the variable displaySelector in the metanode.

Meta-driven Browsers 143

Omnibrowser core framework
il MetaNode
fiter displaySelector
filterClass
nodesForParent: ! ig?(?:\t o defaultMetaNode
selectAncestorOf:withParent: dIdA t.p a
wantsButton adanctor:
displaySelector:
ModalFilter actors metaNode ~ defaultRootNode
Browser class
Actor Definition Node Browser
dispatcher defaultMetaNode
actionsForNode: accept:notifying: | name panels '~ defaultRootNode
actionsForParent: text text open
AN text: definition AN title
File browser FileNode
path
name FileBrowser
FileActor text FileBrowser class
actionsForNode: _ '~ TdefaultVietaNode
removeFile: DirectoryNode defaultRootNode
renameFile: - - title
directories
files
fullName
text

< - - instance of

Fig. 5. Core of the OmniBrowser framework and its extension for the file browser

The class Actor is normally instantiated by metanodes and is used to define
node related actions. The method actionsForNode: may be overridden in sub-
classes to answer an ordered collection of actions. The method actionsForParent:
is used to specify actions that are independent from any nodes. These actions
are typically shown on a menu when no node is selected.

The class Node represents an element of the domain graph. Each node has
a name. This name is used when lists of nodes are displayed in the navigation
columns of the browser. When a node is selected in a list, information related to
this node needs to be displayed in the bottom text pane. When the node is not
supposed to be edited, the message text is sent to it, returning a string displayed
in the bottom pane. When it is editable, it is sent the message definition which
needs to return an instance of a subclass of Definition. Note that the nodes do
not need to be configured to be editable or not. When they implement a method
definition, this will be used and the node will be editable. If that method is not
present, then the method text is used.

When the browser is in a state where several transitions are available, it dis-
plays the possibilities to the user. From all the possible transitions, OmniBrowser
framework fetches all the nodes that represent the states the user could arrive at
by following those transitions and list them in the next column. Once a selection

144 A. Bergel et al.

is made, the transition actually happens, the pane definition is updated and the
process repeats.

As explained before, a filter or modal filter can be used to select only a num-
ber of outgoing edges when not all of them need to be shown to the user. This
is useful for instance to display the instance side, comments, or class side of
a particular class in the classic standard system browser (cf. Section H). Class
Filter is responsible for filtering nodes in the graph. The method nodesForPar-
ent: computes a transition in the domain metagraph. This method returns a
list of nodes obtained from a given node passed as argument. The class Filter
is subclassed into ModalFilter, a handy filter that represents transitions in the
metagraph that can be traversed by using a radio button in the GUI.

3.4 Glueing Widgets with the Metagraph

From the programmer point of view, creating a new browser implies defining
a domain model (set of nodes like FileNode and DirectoryNode), a metagraph
intended to steer the navigation and a set of actors to define interaction and
actions with domain elements. The graphical user interface of a browser is au-
tomatically generated by the OmniBrowser framework. The GUI generated by
OmniBrowser framework is contained in one window, and it is composed of 4
kinds of widgets (lists, radio buttons, menus and text panes).

The layout of a browser can be redefined and use other widgets then the ones
described above, but those are then not used by the metagraph. For instance,
the OmniBrowser framework-based system browser uses a toolbar widget that
allows a user to launch other kind of browsers like the variable and hierarchy
browsers. We will not describe how to use other widgets, as this is outside the
scope of this paper.

Lists. Navigation in OmniBrowser framework is rendered with a set of lists and
triggered by selecting one entry in a list. Lists displayed in a browser are ordered
and are displayed from left to right. Traversing a new metanode, by selecting a
node in a list A, triggers the construction of a set of nodes intended to fill a list
B. List B follows list A.

The root of a metagraph corresponds to the left-most list. The number of
lists displayed is equal to the depth of the metagraph. The depth of the system
browser metagraph (Figure []) is 4, therefore the system browser has 4 panes
(Figure [M). Because the metagraph of a filesystem may contain cycles (i.e., a
directory may contain directories, as shown in Figure H), the number of lists in
the browser increases for each directory selected in the right-most list. Therefore
a horizontal scrollbar is used to keep the width of the browser constant, yet
displaying a potentially infinite number of lists in the top half.

Radio buttons. A modal filter in the metagraph is represented in the GUI
by a radio button. Each edge leading away from the filter is represented as a
button in the radio button. Only one button can be selected at a time in the
radio button, and the associated choice is used to determine the outgoing edges.
For example, the second list in the system browser contains the three buttons

Meta-driven Browsers 145

instance, 7 and class as shown the transition from the environment to the three
metanodes class, class comment and metaclass in Figure [7

Menus. A menu can be displayed for each list widget of a browser. Typically
such a menu displays a list of actions that can be executed by a browser user.
These actions enable interaction with the domain model, however they do not
allow further navigation in the metagraph.

x B System Browser: OBFilter 0
OmniBrowser-Ker:® | OBAction 1A s MetaNode: .
OmniBrowser-Mor® OBActor 4) I‘*nd method... {f) A
OmniBrowser-Nod OBBrowser file out

OmniBrowser-Noti OBColumn _Ibrowse (b)

OmniBrowser-Pan OBDispatcher trowse hierarchy

OmniBrowser-Util: OEFilter chase variables

Services-Base OEMetaEdge e inspect instances

Services-Base-Prol | 5555y . o
Services-Base-Reqy [class| e ;22):;; sg) instances i
’browse Hvariables Hhierarchy H inheri gzg;me... @

" subclass template
setMetaNode: aMetaNode e el e :
metaNode _ aMetaNode s

Fig. 6. Example of menu in the OmniBrowser framework system browser

Figure [shows an example of a menu offering actions related to a class. These
correspond to the list of actions returned by the method actionsForNode: in the
class ClassActor.

Text pane. When a node is selected in a list, some information related to this
node is displayed in a text pane. Committing a change in the text pane sends
the message accept: new Text notifying: aController to the definition shown in this
pane. A browser contains only one text pane.

4 The OmniBrowser-Based System Browser

In this section we show how the framework is used to implement the traditional
class system browser.
4.1 The Smalltalk System Browser

The system browser is probably the most important tool offered by the Smalltalk
programming environment. It enables code navigation and code editing. Figure [

146 A. Bergel et al.

x B System Browser: Class o
Kernel-Chronology * Behavior 8| -- all -- ¥ template: .
Kernel-Classes 4 ClassDescription 4 fileln/Out 4| templateForSubclassOf: | A
Kernel-Contexts Class instance creation

Kernel-Methods Metaclass inquiries

Kernel-Numbers Categorizer

Kernel-Objects BasicClassOrganizer

Kernel-Processes ClassOrganizer

Kernel-STS0 Remnants ClassBuilder
KernelTests-Chronology ClassCategoryReader

KernelTests-Classes ClassCommentReader §

KerneltostsMotods | iasiaace |7 | NN I I
browse H variables H hierarchy H inheritance H senders H implementors “ versions

templateForSubclassOf: priorClassName category: systemCategoryName -

"Answer an expression that can be edited and evaluated in order to define a new class,
given that the class previously looked at was as given”

+ priorClassName asString, ' subclass: #*NameOfSubclass
instanceVariableNames: """

classVariableNames: """

poolDictionaries: "'

category: ', systemCategoryName asString , """’

Fig. 7. OmniBrowser framework based Smalltalk system browser

shows the graphical user interface of this browser, and how it appears to the
Smalltalk programmer.

This browser just replicates the traditional four panes system browser dis-
cussed in Section 2l The system browser is mainly composed of four lists (upper
part) and a panel (lower part). From left to right, the lists represent (i) class
categories, (ii) classes contained in the selected class category, (iii) method cat-
egories defined in the selected class to which the — all — category is added, and
(iv) the list of methods defined in the selected method category. On Figure[l] the
class named Class, which belongs to the class category Kernel-Classes is selected.
Class has three methods categories, plus the — all = one. The method template-
ForSubclassOf:category contained in the instance creation method category is
selected.

The lower part of the system browser contains a large textual panel display
information about the current selection in the lists. Selecting a class category
makes the render display a class template intended to be filled out to create a new
class in the system. If a class is selected, then this panel shows the definition of
this class. If a method is selected, then the definition of this method is displayed.
The text contained in the panel can be edited. The effect of this is to create a
new class, a new methods, or changing the definition of a class (e.g., adding a
new variable, changing the superclass) or redefining a method.

In the upper part, the class list contains three buttons (titled instance, ? and
class) to let one switch between different “views” on a class: the class definition,
its comment and the definition of its metaclass. Just above the panel, there is a

Meta-driven Browsers 147

toolbar intended to open more specific browsers like a hierarchy browser and a
variable access browser.

4.2 System Browser Internals

The Omnibrowser-based implementation of the Squeak system browser is com-
posed of 19 classes (2 actors, 2 classes for the browser, 3 classes for the defini-
tions of classes, methods and organization, 10 classes defining nodes and 2 utility
classes with abstractions to help link the browser and the system). 220 methods
are spread over these 19 classes. Figure B shows the classes in OmniBrowser
framework that need to be subclassed to produce the system browser. Note that
the two utility classes are not represented on the picture.

Omnibrowser core framework

Definition Node Actor Browser

A A A a i A

7 X

System br/wser \ / \

Class Method Organization Category Class Code
Definition || Definition Definition Actor Actor Browser
Code A
Node System

ZF Browser
ClassComment [: ClassAware :] Environment
Node Node Node

AN

Method Method ClassCategory
ClassNode CategoryNode Node Node
MetaClassN AllMethod
ode CategoryNode

Fig. 8. Extension of OmniBrowser framework to define the system browser

Compared to the default implementation of the Squeak System Browser this
is less code and better factored. In addition other code-browsers can freely reuse
these parts.

Figure [@ depicts the metagraph of the system browser. The metanode envi-
ronment contains information about class categories. The filter is used to select
what has to be displayed from the selected class (i.e., the class definition, its
comment or the metaclass definition). A class and a metaclass have a list of
method categories, including the — all — method category that shows a list of
methods.

148 A. Bergel et al.

Class
AllMethod
Category
Environment Class Method
Comment
Method
Category
Metaclass

Metggtode D Filter —» Transition

Fig. 9. Metagraph of the system browser

Widgets notification. Widgets like menu lists and text panels interact with
each other by triggering events and receiving notifications. Each browser has a
dispatcher (referenced by the variable dispatcher in the class Browser) to con-
duct events passing between widgets of a browser. The vocabulary of events is
the following one:

e refresh is emitted when a complete refresh of the browser is necessary. For
instance, if a change happens in the system, this event is triggered to order
a complete redraw.

e nodeSelected: is emitted when a list entry is selected with a mouse click.

e nodeChanged is emitted when the node that is currently displayed changes.
This typically occurs when one of buttons related to the class is selected.
For example, if a class is displayed, pressing the button instance, class or
comment triggers this event.

e okToChangeNode is emitted to prevent loose some text edition why changing
the content of a text panel if this was modified without being validated.
This happens when first a user writes the definition of a method, without
accepting (i.e., compiling) it, and then another method is selected.

Each graphical widget composing a browser are listeners and can emit events.
Creation and registration of widgets as listeners and event emitters is completely
transparent to the end user.

State of the browser. Contrary to the original Squeak system browser where
each widget state is contained in a dedicated variable, the state of a OmniBrowser
framework-based browser is defined as a path in the metagraph starting from
the root metanode. Each metanode taking part of this path is associated to
a domain node. This preserves the synchronization between different graphical
widgets of a browser.

Meta-driven Browsers 149

5 The Coverage Browser

The coverage browser is an extension to the system browser to show the cover-
age of code by unit tests. It extends the system browser in two ways. First of all
it appends the percentage of elements covered by tests to the elements in the lists

x B Coverage Browser: UUID (o}
Network-UUID ®|| UUID [39%] * --all -- ®| initialize [100%] * UUIDPrimitivesTest»te ®
NewCompiler-Bytecode® UUIDGenerator 4 comparing [0%] — A | UUIDPrimitivesTest»te A
NewCompiler-Extras converting [63%] UUIDPrimitivesTest»te
NewCompiler-IR initalize-release [100% UUIDPrimitivesTest>te
NewCompiler-Semantic printing [0%] UUIDPrimitivesTest»te
NewCompiler-Standalo system primitives [10(UUIDPrimitivesTest»te

«

NewCompiler-Syntax)) testing [95%] UUIDPrimitivesTest»»te
NewCompiler-Tests o | instance | ? | class *smbase-macsafe [D%:'

NewlCnmpiler-Tonls ¥ b
browse wvariables hierarchy inheritance senders implementors versions
testCreation -
| uuid | a

uuid _ UUID new.
self should: [uuid size = 16]. v

Fig. 10. Screenshot of the coverage browser

Omnibrowser core framework

z z

System browser Code Code
N
ClassAware System
Method
Node
Coverage browser
Coverage Coverage Coverage
MethodNode MethodNode Browser
Vo A
CoverageSet Coverage Coverage
Node ElementNode EnvironmentNode Coverage
Actor

Actor Actor

| CoverageSet | MethodNode

|| EnvironmentActor | ElementActor

Fig. 11. Extension of Omnibrowser and system browser to define the coverage browser

150 A. Bergel et al.

Method
Method [Coverage]

[Meta-node] [Metrao—gtode] D Filter — Transition

Fig. 12. Metagraph for the coverage browser

making up the browser. Secondly it adds a fifth pane that lists the unit tests
that test a selected method. A screenshot is shown in Figure It shows us
that 39% of the class UUID is covered by tests, and that the method initialize
is covered at 100% by the tests shows in the right-most pane. One of these test
is testCreation.

The coverage browser is composed of 11 classes (1 class for the browser, 5
actors and 5 nodes). Figure [[] illustrates how classes in OmniBrowser and in
the system browser are extended to define this new browser. The metagraph is
depicted in Figure [[2 and is identical to the system browser except with a new
Method Coverage metanode. The depth of the graph, which is 5, is reflected in
the number of list panes the browser is composed of.

6 Evaluation and Discussions

Several other browsers such as a browser specifically supporting traits M
have been developed using OmniBrowser framework demonstrating that the
framework is mature and extensible [RJ97]. Figure [[3 shows some browsers that
are based on OmniBrowser framework. We now discuss the strengths and limi-
tations of the OmniBrowser framework.

6.1 Strengths

Ease of use. As any good framework, extending it following the framework
intention make it easy to specify advanced browsers. The fact that the browser
navigation is explicitly defined in one place lets the programmer understanding
and controlling the tool navigation and user interaction. The programmer does
not have the burden to explicitly create and glue together the Ul widgets and
their specific layout. Extra decorating widgets such as extra-menu is possible
and defined independently. Still the programmer focuses on the key domain of
the browser: its navigation and the interaction with the user.

Explicit state transitions. Maintaining coherence among different widgets
and keeping them synchronized is a non-trival issue that, while well supported

Meta-driven Browsers 151

Browser

Code
Browser

Hierarchy [: :] Version
Browser Browser

List Inheritance System

Browser Browser Browser
Implementor Reference Sender Variables
Browser Browser Browser Browser

Fig. 13. Some code browsers developed using OmniBrowser framework

by GUI frameworks, is often not well used. For instance, in the original Squeak
browser, methods are scattered with checks for nil or 0 values. For instance,
the method classComment: aText notifying: aPluggableTextMorph, which is called
by the text pane (F widget) to assign a new comment to the selected class (B
widget), is:

Browser>>classComment: aText notifying: aPluggableTextMorph
theClass := self selectedClassOrMetaClass.
theClass
ifNotNil: [...]

The code above copes with the fact that when pressing on the class comment
button, there is no warranty that a class is selected. In a good UI design, the
comment class button should have been disabled however there is still checks
done whether a class is selected or not. Among the 438 accessible methods in
the non Omnibrowser-based Squeak class Browser, 63 of them invoke ifNil: to
test if a list is selected or not and 62 of them invoke ifNotNil:. Those are not
isolated Smalltalk examples. The code that describes some GUI present in the
JHotDraw [JHo] contains the pattern checking for a nil value of variables that
may reference graphical widgets.

Such as situation does not happen in OmniBrowser framework, as metagraphs
are declaratively defined and each metaedge describes an action the user can
perform on a browser, states a browser can be in are explicit and fully described.

Separation of domain and navigation. The domain model and its navigation
are fully separated: a metanode does not and cannot have a reference to the
domain node currently selected and displayed. Therefore both can be reused
independently.

6.2 Limitations

Hardcoded flow. As any framework, OmniBrowser framework constraints the
space of its own extension. OmniBrowser framework does not support well the

152 A. Bergel et al.

definition of navigation not following the left to right list construction (the result
of the selection creates a new pane to the right of the current one and the
text pane is displayed). For example, building a browser such as Whiskers that
displays multiple methods at the same time would require to deeply change the
text pane state to keep the status of the currently edited methods.

Currently selected item. The OmniBrowser framework does not easily sup-
port the building of advanced browsing facilities such as the one of the Visual-
Works standard browser. In VisualWorks, it is possible to select a package, then
select one class of this package and as third step see the inheritance hierarchy of
this class within the context of the previously selected package. The problem is
that conceptually the selected item is not part of the state representation. It is
possible using UI events passing among the widgets to implement

7 Related Work

MVC. The Model-View-Controller [KP88| [Reel [ReeT9| promotes a distinction
between three important roles (namely data, output and interaction) that should
be reflected in the design of a user interface framework. Those roles were reflected
in three abstract superclasses: Model, View, Controller. Still for system browsers,
developers consider the model as the entities of the domain and do not have
explicit or meta entities describing the navigation within the domain model. Note
also that a controller in MVC captures the interaction of users with a widget,and
passes this information to the model. The level of abstraction, however, is lower
than what is offered by the Actor in the OmniBrowser framework, which is not
programmed in terms of a widget but in terms of the domain entities.

HotDraw. The state transitions between the possible tools in HotDraw [Joh92]
are driven by an explicit state machine and follow an explicit transition structure.
There is a graphical editor (constructed with HotDraw itself) to construct the
view and edit the state machine. The goal of the state machine is similar to
the goal of the metagraph in the OmniBrowser framework: to make navigation
explicit. In HotDraw, however, the events to go from one state to another are
taken from a limited set of possible actions such as mouse over.

HyperCard. Conceptually, a HyperCard [Goo98] application is a stack of cards.
Each card contains some information and links to other cards in the same or
other stacks. The information on the cards is shown using text and graphics.
The links to other cards are presented as buttons, typically completed with an
icon representing the destination card. A user of HyperCard browses the cards
of a stack using the link button. Only one card of a stack is displayed at a time.
Clicking a link button results in the display of the destination card. When a
stack has not only information to be displayed, but also has to exhibit an active
behavior, the stack designer has to develop cards by means of a scripting level,
on which programming in the dedicated language HyperTalk is supported. Still
there is not as such a metagraph describing the navigation of a domain graph.

Meta-driven Browsers 153

ApplFLab. Steyaert et al. defined the notion of reflective application buil-
der with as explicit goal to be able to construct and reuse (parame-
trizable) user interface components. ApplFLab was used to construct several
domain specific user interfaces, including browsers in development environments
[Wuy96].

ApplFLab structures a software program using four distinct kinds of compo-
nents:

e a user interface component controls the display and the user interaction of
a particular piece of information, supplied by the domain model. Note that
this component is parametrized by the domain model, and therefore can be
reused across different domains.

e an application model manages the global behavior of group of interface com-
ponents. It is responsible for the user interface logic and controls user inter-
face. A same application model can be reused on different domain models
and a domain model can have several application models in parallel.

e a domain model models the overall functionality of the problem domain and
maintains user interface independent constraints.

e a set of aspects is needed to separate the domain model from the user inter-
face component.

Interaction between these four components is based on emitting events and being
notified. There are three kinds of event: display, notify and control.

The advantage of ApplFLab lies in its notion of parametrized user interface
component. A user interface component consists of a GUI description, and pa-
rameters to link the component to the domain or to specify other information
when it is used in an application. The components are plugged together to form
applications. One could for example build a list component, and parametrize
it with categories, classes, protocols and selectors to get the four top elements
that make a System Browser (as shown in Section [I]). Combine it with a Text
component and the System Browser is complete.

While both ApplFLab and the OmniBrowser make it easy to build browsers,
there are some differences. The OmniBrowser is a domain specific approach for
building browsers, while ApplFLab is general. So when using ApplFLab to build
browser, browser specific components need to be built first, for example to get
the left-to-right selection behavior that is built-in with OmniBrowser. ApplFLab
also had a steeper learning curve, since building a good reusable component (be
it a visual one or a regular one) remains fairly difficult. On the other hand,
OmniBrowser offers more built-in behavior which makes it easier to use but also
forces certain behavior that might not always be wanted.

ThingLab. Freeman-Benson and Maloney [FB89] wrote ThingLab II, an object-
oriented constraint system for direct manipulation user interface implemented in
Smalltalk-80. In ThingLab II, user-manipulable entities are collections of objects
know as Things. ThingLab II provides a large number of primitive Things equiv-
alent to the operations and data structures provided in any high-level language:
numerical operations, points, strings, bitmaps, conversion, etc.

154 A. Bergel et al.

A thing is constructed from things objects and constraint objects. Higher-level
things can be built out of the lower-level ones. Constraints are either satisfied
or they are not satisfied, and they are simple declarative declarations that do
not hold state. Browser navigation can be expressed by constraints between the
different elements that composed a browser. But there is no explicit distinction
between the domain and its navigation.

8 Conclusion

Smalltalk is known for its advanced development environment, featuring ad-
vanced browsers that let developers navigate and change code relatively easily.

Building browsers, however, is a daunting task. The main problem is that
every navigation action performed by a user in a widget changes the state of
that (and possibly other) widgets. Given the high number of possible navigation
actions, the complexity of managing the navigation by managing the states of
the browser is a very complex task. This can be seen in most current browser
implementations, which are complex and hard to extend because the navigation
is implicitly encoded in the management of the state of the widgets.

To make it easier to build and extend browsers, this paper introduces a frame-
work for building browsers that is based on modeling user navigation through
an explicit graph. In this framework, browsers are built by modeling the domain
with nodes, expressing the navigation with a metagraph and describing the in-
teraction between the browser and the domain through actors. The framework
uses these descriptions to construct a graphical application. The top half of the
application uses lists that allow the user to navigate the described domain. The
bottom half of the pane allows to visualize and edit nodes selected in the top half.

The framework is implemented in Squeak Smalltalk through the OmniBrowser
framework. The paper showed three concrete instantiations of the framework:
a file browser to navigate a file system,a reimplementation of the ubiquitous
Smalltalk System Browser, and a code coverage browser. There are more in-
stantiations of the browser that we have not discussed in this paper but that
are available. The validation shows that the goals of the frameworks are met.
Building the System Browser with the OmniBrowser framework shows that the
code is lots simpler. The Code Coverage browser shows that it is easy to extend
an existing browser.

For future work we plan to enhance the OmniBrowser framework with the
ability to have multiple text panes to be part of a browser. We also plan to
extend the framework to support more and richer widgets (such as toolbars
and flaps). Last but not least we want to investigate how we can extend the
metagraph to look at other ways of navigating it.

Acknowledgment. We would like to thank Niklaus Haldimann and Stefan
Reichnart for their use of the OmniBrowser framework.

We gratefully acknowledge the financial support of the french ANR project
“Cook: Réarchitecturisation des applications industrielles objets” (JC05 42872)

Meta-driven Browsers 155

and of the Science Foundation Ireland and Lero — the Irish Software Engineering
Research Centre.

References

[ABWOS]

[DNST06]

[FB8Y)

[FBB*99]
[Gol&4]

[Goo98]
[GRS3]

[HalO5]

[JHo|
[Joh92]

[KPSg]

[RBJ97]

[RBJOYG6]

[Ree]
[ReeT9]

[RJ97]

[SBO4]

[SHDBY6]

Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, 1998.

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schérli, Roel Wuyts, and
Andrew Black. Traits: A mechanism for fine-grained reuse. ACM Trans-
actions on Programming Languages and Systems, 28(2):331-388, March
2006.

Bjorn N. Freeman-Benson. A module mechanism for constraints in
Smalltalk. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24,
pages 389-396, October 1989.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison Wesley, 1999.
Adele Goldberg. Smalltalk 80: the Interactive Programming Environment.
Addison Wesley, Reading, Mass., 1984.

Danny Goodman. The Complete HyperCard 2.2 Handbook. iUniverse, 1998.
Adele Goldberg and David Robson. Smalltalk 80: the Language and its
Implementation. Addison Wesley, Reading, Mass., May 1983.

Niklaus Haldimann. A sophisticated programming environment to cope
with scoped changes. Informatikprojekt, University of Bern, December
2005.

Jhotdraw: a java gui framework for technical and structured graphics.
http://www.jhotdraw.org.

Ralph E. Johnson. Documenting frameworks using patterns. In Proceedings
OOPSLA 92, volume 27, pages 63-76, October 1992.

G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26-49, August 1988.

Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253-263,
1997.

Don Roberts, John Brant, Ralph E. Johnson, and Bill Opdyke. An auto-
mated refactoring tool. In Proceedings of ICAST 96, Chicago, IL, April
1996.

Trygve M. H. Reenskaug. The model-view-controller (mvc) — its past and
present. JavaZONE, Oslo, 2003.

Trygve M. H. Reenskaug. Models - views - controllers, December 1979.
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf.

Don Roberts and Ralph E. Johnson. Evolving frameworks: A pattern
language for developing object-oriented frameworks. In Pattern Languages
of Program Design 3. Addison Wesley, 1997.

Nathanael Schérli and Andrew P. Black. A browser for incremental pro-
gramming. Computer Languages, Systems and Structures, 30:79-95, 2004.
Patrick Steyaert, Koen De Hondt, Serge Demeyer, and Niels Boyen. Re-
flective user interface builders. In Chris Zimmerman, editor, Advances
in Object-Oriented Metalevel Architectures and Reflection, pages 291-309.
CRC Press — Boca Raton — Florida, 1996.

http://www.jhotdraw.org
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf

156 A.

[SLMD96]

[SM8S]

[WD04]

[Wuy96]

Bergel et al.

Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse
Contracts: Managing the Evolution of Reusable Assets. In Proceedings of
OOPSLA ’96 (International Conference on Object-Oriented Programming,
Systems, Languages, and Applications), pages 268-285. ACM Press, 1996.
Pedro Szekely and Brad Myers. A user interface toolkit based on graphical
objects and constraints. In Proceedings OOPSLA 88, ACM SIGPLAN
Notices, volume 23, pages 36-45, November 1988.

Roel Wuyts and Stéphane Ducasse. Unanticipated integration of develop-
ment tools using the classification model. Journal of Computer Languages,
Systems and Structures, 30(1-2):63-77, 2004.

Roel Wuyts. Class-management using logical queries, application of a re-
flective user interface builder. In I. Polak, editor, Proceedings of GRONICS
’96, pages 61-67, 1996.

Author Index

Bergel, Alexandre 66, 134 Hirschfeld, Robert 1
Brichau, Johan 1 Huchard, Marianne 91

Caiiibano, Nicolds 23 Kellens, Andy 1

Mens, Kim 1
D’Hondt, Theo 1
Denker, Marcus 47 Nierstrasz, Oscar 66
Dony, Christophe 91
Ducasse, Stéphane 66, 134 Prasse, Michael 111

Putney, Colin 134

Fabresse, Luc 91

Fortier, Andrés 23 Rossi, Gustavo 23

Rothlisberger, David 47

Gordillo, Silvia 23 Tanter, Eric 47
Grigera, Julidn 23
Gybels, Kris 1 Wuyts, Roel 66, 134

	Title
	Preface
	Organization
	Table of Contents
	Application-Specific Models and Pointcuts Usinga Logic Met a Language
	Introduction
	AspectSOUL
	AspectS
	CARMA
	CARMA Pointcuts in AspectS

	Pointcuts Based on Structural Conventions
	Accessors and Mutators
	Complexity and Fragility

	Application-Specific Pointcuts and Models
	Application-Specific Model
	Application-Specific Pointcuts
	Model Specialisation
	Property Parameters and Unification

	Application-Specific Models in Practice
	Drag and Drop Application-Specific Model
	Refactorings

	Related and Future Work
	Expressive Pointcut Languages
	Annotations
	Design Rules and XPI

	Conclusion

	An Object-Oriented Approach for Context-Aware Applications
	Introduction: The Challenges of Context-Awareness
	Motivating Example
	Our Context Model
	The Object-Oriented Architecture
	Main Components
	Communication Mechanisms
	Creating, Deploying and Activating Context-Aware Services
	Context as Behavior Added to the User

	Handling Different Sensing Mechanisms
	A Pure Object-Based Distribution Scheme
	Opentalk Basics
	Opentalk Extensions

	Related Work
	Concluding Remarks and Further Work

	Unanticipated Partial Behavioral Reflection
	Introduction
	Running Example
	Related Work and Motivation
	Reflection in Smalltalk-80
	Extended Behavioral Reflection in Smalltalk: MetaclassTalk
	Unanticipated Behavioral Reflection: Iguana/J
	Partial Behavioral Reflection: Reflex
	Motivation

	Unanticipated Partial Behavioral Reflection for Smalltalk
	Partial Behavioral Reflection in a Nutshell
	Bytecode Manipulation for Unanticipated Behavioral Reflection in Smalltalk
	Solving the Running Example with Geppetto

	Geppetto Design
	Implementation Issues
	Adapting Method Binaries
	Structure of a Hook
	Hook Composition

	Evaluation
	Conclusion and Future Work

	Stateful Traits
	Introduction
	Stateless Traits
	Reusable Groups of Methods
	Composing Classes from Mixins
	Conflict Resolution
	Method Composition Operators

	Limitations of Stateless Traits
	Limited Reusability
	Boilerplate Glue Code
	Propagation of Required Accessors
	Violation of Encapsulation

	Stateful Traits: Reconciling Traits and State
	Stateful Trait Definition
	Variable Access
	Requirements Revisited

	Implementation
	The Classical Problem of State Linearization
	Three Approaches to State Linearization
	Virtual Base Pointers in C++
	Object State as a Dictionary
	Copy Down Methods
	Benchmarks

	Refactoring the Smalltalk Collection Hierarchy
	Discussion
	Flattening Property
	Limiting Change Impact
	About Variable Access

	Related Work
	Conclusion

	Scl:A Simple, Uniform and Operational Language for Component-Oriented Programming in Smalltalk
	Introduction
	Component-Oriented Programming: What, Why and How ?
	The Scl Language
	Component Classes and Component Instances
	Component Provisions and Requirements
	Component Composition
	Separation of Concerns in Component Applications
	Component Properties and Publish/Subscribe Connections

	Implementation
	Related Work
	Conclusion

	Let’s Modularize the Data Model Specifications of the ObjectLens in VisualWorks/Smalltalk
	Introduction
	ObjectLens Framework
	Architecture
	Conceptual Mapping from Classes to Tables
	Programming Metaphor
	Summary

	Data Model Specification
	Conceptualization
	Maintenance Problems
	The DataModelMerger as a First Solution Approach
	Summary

	Modularization of the ObjectLens
	General Ideas and Goals
	Data Model Mappings of Classes
	LensApplication datamodelSpec
	Integration Into the Lens Modeling Tools
	DataModelDefinitionGenerator
	Summary

	Conclusion
	References

	Meta-driven Browsers
	Introduction
	Defining and Maintaining the State of a Graphical User Interface
	Defining a Browser: A Graph and a Metagraph
	Overview of the OmniBrowser Framework
	A Simple Example: A File Browser
	Core Behavior of the Framework
	Glueing Widgets with the Metagraph

	The OmniBrowser-Based System Browser
	The Smalltalk System Browser
	System Browser Internals

	The Coverage Browser
	Evaluation and Discussions
	Strengths
	Limitations

	Related Work
	Conclusion

	Author Index

